
MS320 PROGRAMMING REFERENCE
MANUAL

Version4.01
December 2000

Trademarks are property of their respective holders.

Minisoft
1024 First Street, Snohomish WA

USA

Phone: 800-682-0200
FAX 360-563-2923

E-Mail Sales: sales@minisoft.com
E-Mail Technical Support: support@minisoft.com

http:\\www.minisoft.com

Copyright ©2000
All Rights Reserved

u
TABLE OF CONTENTS

COMMAND LANGUAGE 1

1.1 COMMAND SYNTAX 2
1.2 COMMAND EXECUTION 2
1.2.1 Command Line Execution 2
1.2.1.1 Entering Multiple Commands 3
1.2.2 Executing from the Host 3
1.3 COMMAND FILES 3
1.3.1 Specifying a Command File 3
1.3.2 Default Command File 4
1.3.3 Command Line Execution 4
1.3.4 Executing from the Host 4
1.3.5 Nested Command Files 4
1.3.6 Comments 5
1.4 ABORTING COMMANDS 5
1.5 EMULATOR COMMAND LIST 6
1.5.1 Emulator Command Descriptions 8

COMMAND FILE PROGRAMMING 49

2.1 DOCUMENTING COMMAND FILES 50
2.2 PASSING PARAMETERS 50
2.3 SYMBOLS 51
2.3.1 Symbol Types 51
2.3.1.1 Permanent Global Symbols 51

2.3.2 Assigning Symbol Values 52
2.3.2.1 Implied String Assignments 52
2.4 LABELS 53
2.5 EXPRESSION EVALUATION 54
2.5.1 String to Integer Conversion 54
2.5.2 String Expressions 54
2.5.3 Integer Expressions 55
2.5.4 Expression Substitution 55
2.6 OPERATORS IN EXPRESSIONS 56
2.6.1 String Operations 57
2.6.2 Arithmetic Operations 57
2.6.3 Logical Operations 58
2.6.4 String Comparisons 58
2.6.5 Arithmetic Comparisons 59
2.6.6 Radix Operators 59
2.7 SPECIAL CHARACTERS 60
2.7.1 Input Conversion 60
2.7.2 Output Conversion 61
2.8 FOREIGN COMMANDS 62
2.9 LEXICALS 63
2.10 DISPLAY LEXICALS 66
2.11 SYMLEXES 67
2.11.1 Defining a Symlex 67
2.12 SYMBOL AND LEXICAL SUBSTITUTION 69
2.12.1 Automatic Symbol Substitution 69
2.12.2 Substitution Using Apostrophes 69
2.12.3 Substitution Using Ampersands 70
2.12.4 Three Phases of Symbol Substitution 71
2.12.4.1 Iterative Substitution Using Apostrophes 72
2.12.4.2 Iterative Substitution Using Command Synonyms 72
2.12.4.3 Iterative Substitution in Expressions 73
2.12.4.4 Substitution of Undefined Symbols 73
2.13 ERROR FACILITY 74
2.13.1 $STATUS Conditional Codes 75
2.13.2 DOS ERROR LEVEL 77
2.13.3 Messages 77

Table of Contents ii

VT320 PROGRAMMING 85

3.1 QUICK REFERENCE TABLES 86 89
3.1.1 Character Sets 86
3.1.2 Transmitted Codes 87
3.1.3 Received Codes 88
3.1.3.1 VT320 Control Sequences 89
3.1.3.2 VT100 Escape Sequences 93
3.1.3.3 VT52 Escape Sequences 95
3.1.4 Reports 96
3.1.4.1 VT320 Reports 96
3.1.4.2 VT100 Reports 99
3.2 CHARACTER ENCODING 100
3.2.1 7-Bit ASCII Codes 101
3.2.2 8-Bit ASCII Codes 102
3.2.3 Control Functions 104
3.2.3.1 Control Sequences 104
3.2.3.2 Escape Sequences 104
3.2.3.3 Device Control Strings 105
3.3 CHARACTER SETS 105
3.3.1 DEC Multinational 106
3.3.2 ISO Latin-1 108
3.3.3 DEC Special Graphics 109
3.3.4 National Replacement Character 110
3.3.5 Character Set Selection 110
3.3.6 Mapping Character Sets 112
3.4 TRANSMITTED CODES 114
3.4.1 Main Keypad 114
3.4.1.1 Standard Keys 114
3.4.2 Editing Keypad 114
3.4.3 Auxiliary Keypad 115
3.4.4 Top Row Function Keys 116
3.4.5 Control Codes 117
3.5 RECEIVED CODES 118
3.5.1 Character Rendition and Attributes 118
3.5.1.1 Select Graphic Rendition 118
3.5.1.2 Select Attributes 118
3.5.2 Compatibility Level 118
3.5.3 Control Characters 118
3.5.4 Cursor Positioning 118
3.5.5 Editing 119
3.5.6 Erasing 119
3.5.7 Line Attributes 120
3.5.8 Printing 120
3.5.9 Scrolling Region 120
3.5.10 Select C1 Controls 121
3.5.10.1 Select 7-bit C1 Transmission (S7C1T) 121

iii

3.5.10.2 Select 8-bit C1 Transmission (S8C1T) 121
3.5.11 Tab Stops 121
3.5.12 Terminal Modes 121
3.5.12.1 Reset Mode (RM) 122
3.5.12.2 Set Mode (SM) 122
3.5.12.3 ANSI/VT52 Mode (DECANM) 123
3.5.12.4 Auto Repeat Mode (DECARM) 123
3.5.12.5 Auto Wrap Mode (DECAWM) 124
3.5.12.6 Backarrow Key Mode (DECBKM) 124
3.5.12.7 Character Set Mode (DECNRCM) 124
3.5.12.8 Column Mode (DECCOLM) 124
3.5.12.9 Cursor Key Mode (DECCKM) 125
3.5.12.10 Insert/Replace Mode (IRM) 125
3.5.12.11 Keyboard Action Mode (KAM) 125
3.5.12.12 Keypad Mode (DECKPAM/DECKPNM) 125
3.5.12.13 Line Feed/New Line Mode (LNM) 126
3.5.12.14 Numeric Keypad Mode (DECNKM) 126
3.5.12.15 Origin Mode (DECOM) 126
3.5.12.16 Print Extent Mode (DECPEX) 126
3.5.12.17 Print Form Feed Mode (DECPFF) 127
3.5.12.18 Screen Mode (DECSCNM) 127
3.5.12.19 Scrolling Mode (DECSCLM) 127
3.5.12.20 Select Status Display (DECSASD) 127
3.5.12.21 Select Status Line Type (DECSSDT) 128
3.5.12.22 Send/Receive Mode (SRM) 128
3.5.12.23 Text Cursor Enable Mode (DECTCEM) 129
3.5.13 Terminal Reset Mode 129
3.5.13.1 Soft Terminal Reset 129
3.5.13.2 Hard Terminal Reset 129
3.5.14 Programming User Defined Keys (UDKs) 130
3.5.14.1 DECUDK DCS Format 130
3.5.14.2 Guidelines for Loading Keys 131
3.5.14.3 Examples for Using DECUDK 131
3.5.15 DCS Private Control Sequences 132
3.5.15.1 Example - DCS Private Sequence 132
3.6 REPORTS 133
3.6.1 Device Attributes 133
3.6.1.1 Primary Device Attributes 133
3.6.1.2 Secondary Device Attributes 134
3.6.2 Device Status Reports 134
3.6.2.1 Cursor Position 134
3.6.2.2 Keyboard Dialect 134
3.6.2.3 Operating Status 134
3.6.2.4 Printer Status 135
3.6.2.5 User-Defined Key (UDK) Status 135
3.6.3 Terminal State Reports 136
3.6.3.1 Restore Terminal State 136
3.6.4 Presentation State Reports 137
3.6.4.1 Request Presentation State Report 137
3.6.4.2 Cursor Information 137
3.6.4.3 Tab Stop Report 140
3.6.4.4 Restore Presentation State 140
3.6.5 Mode Settings 140
3.6.5.1 Request Mode 141
3.6.5.2 Report Mode 142

Table of Contents iv

WYSE, SCO-ANSI & ANSI PROGRAMMING 146

4.1 WYSE PROGRAMMING SEQUENCES 147
4.1.0.1 Screen Feature Codes 147
4.1.1 Cursor Addressing 147
4.1.2 Row/Column Codes 148
4.1.3 Display Attributes 149
4.1.4 Attribute Codes 150
4.1.5 Control Codes 151
4.1.6 Escape Codes 153
4.1.7 Function Value Field Codes/Default Value Codes 156
4.1.8 Key Tokens 157
4.2 SCO-ANSI PROGRAMMING SEQUENCES 158
4.2.1 Character Attributes 158
4.2.2 Character Sets 158
4.2.3 Color Attributes 159
4.2.3.1 ANSI Color Attributes 159
4.2.3.2 SCO Xenix Color Attributes 159
4.2.4 Columns 160
4.2.5 Cursor Positioning 160
4.2.6 Inserting 161
4.2.7 Key Assignments 162
4.2.8 Keyboard Control 162
4.2.9 Report 163
4.3 ANSI PROGRAMMING SEQUENCES 163
4.3.1 ANSI Color Support 163

DYNAMIC DATA EXCHANGE 166

5.1 USING DDE 167
5.1.1 DDE Concepts 167
5.1.2 Service Names, Topic Names, and Item Names 168
5.1.3 Server Topics 168
5.2 SYSTEM TOPIC 168
5.2.1 System Topic Items 169
5.3 ECL TOPIC 169
5.3.1 ECL Topic Items 169
5.3.2 Requesting the Value of an ECL Variable 170
5.3.3 Changing the Value of an ECL Variable 170
5.3.4 Creating an Advise Data Link to an ECL Variable 170
5.3.5 Executing ECL Commands or Command Files 171
5.3.6 Settings Topic 171
5.4 DDE COMMANDS 171
5.4.1 DDE Server Operation 171
5.4.2 DDE Error Facility 172
5.4.3 Client Messages 172
5.4.4 Server Messages 173
5.5 DDE COMMAND BUILDER 174
5.5.1 Copying a DDE Command to the Command Line 174
5.6 DDE DEMO 175

Table of Contents v

ASCII CONTROL CODE TABLE 176

INDEX i

Table of Contents vi

u
COMMAND LANGUAGE

OVERVIEW
The Emulation Command Language (ECL) is a powerful command/script language that is similar to
DCL, Digital’s Command Language for VAX/VMS.

The ability to execute emulator commands from command files allows both simple and complex tasks
to be automated. Some of the tasks that can be easily automated with command files are:

o Dialing and login

o File transfer

o Management of host programs

o Data logging and analysis

o Designing a menu driven user interface for host applications

Chapter One - Command Language 1

1.1 COMMAND SYNTAX
Emulator commands appear in uppercase letters (e.g., WRITE HOST). The standard syntax is:

COMMAND /OPTION(S) argument(s)

Note: Arguments shown in brackets, [], are optional.

A command may be abbreviated to the minimum number of characters required to make it non-ambiguous.
Multiple command arguments are separated by spaces.

All options begin with a slash (/). Options may be used anywhere in the command.

Examples: SEND /FILTER TEXT

SEND TEXT /FILTER

Both forms of the send command are valid.

If the argument is a string of characters, the options must immediately follow the command. Character string
arguments (referred to as strings) must be enclosed in quotation marks.

Example: DISPLAY/NOCR “Hello there”

This example shows the use of an option with a string argument. The option directly follows
the command, and the string (Hello there) is enclosed in quotes.

1.2 COMMAND EXECUTION
Emulator commands can be executed from:

o The command line prompt

o A keyboard or mouse definition

o The host computer

o A command file (see the Executing Command Files section)

1.2.1 Command Line Execution
To execute a command from the command line:

1) Click on Execute - Command Line , the C> button on the CMD Toolbar, or pressCMD (default is Alt
C). TheCMD>prompt displays.

2) Enter the command or command file specification at the command prompt.

Example 1: CMD>SET HOST /DISCONNECT

Disconnects the currently connected port.

2

1.2.1.1 Entering Multiple Commands

A series of commands can be given by entering interactive command mode. In interactive mode, the command
prompt reappears after each command is executed. The INTERACTIVE command enters interactive mode. To
terminate interactive mode, use the ENDINTERACTIVE command.

1.2.2 Executing from the Host
Emulator commands may be executed by the host using a DCS private control sequence.

CSI5|Command String S
T

Note: CSI andST are 8-bit characters that can only be used on systems that support full 8-bit characters.
ESC [is the 7-bit equivalent ofCSI . ESC \ is the 7-bit equivalent ofST .

Example: CSI5|SET HOST /DISCONNECTST or
ESC[5|SET HOST /DISCONNECTESC\

These commands are used to disconnect the currently connected port..

1.3 COMMAND FILES
Command files are text files that contain emulator commands. Command files are useful for automating tasks
such as transferring files, logging on, and defining keyboard configurations. However, command files are not
limited to these functions. Chapter 8 (Command File Programming) covers more advanced programming topics.

A command file executes each emulator command in sequence. Emulator command files execute from:

o The command line prompt

o A key definition

o The host computer

o The modem dialer

o A command file

1.3.1 Specifying a Command File
Prefixing a filename with an at symbol (@) tells the emulator to expect a command file. If the filename does
not include an extension, the emulator automatically appends .ECF to the filename.

The default filename extension of .ECF may be overridden by specifying an extension with the command file
name. A command file name can also include a path specification.

Command files can be executed using a search path. Click onSetup - General - Directories to set the command
file default directory (search path).

Chapter One - Command Language 3

1.3.2 Default Command File
A command file can be executed automatically when the emulator loads by entering the name in the Command
File field in the Session Manager’s Properties dialog box. Do not enter the @ symbol as part of the name, or an
extension - the default .ECF, is assumed.

1.3.3 Command Line Execution
A command file can be executed at theCMD>prompt any time you are in the emulator.

1) Click on Execute - Command Line , the C> button on the CMD Toolbar, or pressCMD (default is Alt
C). TheCMD>promptdisplays.

2) Type the @ followed by the name of the command file.

3) Press Return or click the checkmark icon. The command file executes.

Example: CMD>@LOGIN

Executes a command file named LOGIN.ECF.

1.3.4 Executing from the Host
An emulator command file can execute from the host computer system through a DCS Private control sequence.

CSI5|@command file specification S
T

Note: CSI andST are 8-bit characters. They can only be used on systems that support full 8-bit characters.ESCá[is
the 7-bit equivalent ofCSI. ESC \ is the 7-bit equivalent ofST.

Example: CSI5|@MENUST or
ESC[5|@MENUESC\

The host uses these commands in programs, script or command files to run MENU.ECF.

1.3.5 Nested Command Files
To specify a command file from within a command file, precede the command filename with the @ symbol.
After a nested command file is completed, control returns to the next line of the calling command file.

4

1.3.6 Comments
Comments are used in command files to document the purpose of the file and each emulator command.
Comments are prefixed with the exclamation point (!). Any data to the right of the exclamation point is ignored.

Example: ! This command file logs onto a VAX/VMS system and
! changes to the TEST directory.
WAIT “Username:” ! wait for host prompt
WRITE HOST “USER” ! send username to host
WAIT “Password:” ! wait for host prompt
WRITE HOST “USER_TEST” ! send password to host

! change to test directory
WRITE HOST “SET DEF [.TEST]”
EXIT ! exit command file

Comments are used to clearly state the purpose of the file and describe each line of the command
file.

1.4 ABORTING COMMANDS
To abort emulator commands and/or command file execution, clickExecute - Abort , or click on the Abort
button.

Chapter One - Command Language 5

1.5 EMULATOR COMMAND LIST

Command Function
BREAK Send a communications break
CAPTURE Captures text to a file
CLOSE Close a file
CLS Clear screen (short form)
CONTINUE Resume execution of next command
DDE ADVISE Create Advise Data Link
DDE CONNECT Connect a client and server application
DDE DISCONNECT Disconnect the specified conversation
DDE DISCONNECTALL Disconnect all conversations
DDE EXECUTE Send commands to the server to be executed
DDE POKE Send a data item value to the server
DDE REQUEST Request the value of a data item from the server
DDE TOPICS Compile a list of active server applications and topics
DDE UNADVISE Delete an Advise Data Link
DELAY Delay specified time
DELETE SYMBOL Delete symbol(s)
DISPLAY Output data (emulator to screen)
DOS Execute DOS command
DROPDTR Drop Data Terminal Ready (DTR)
EMULATE Enter Emulation mode
ENDINTERACTIVE End interactive command mode
ERASE SCREEN Erase the screen
EXIT Exit to DOS
FILE Perform a file transfer
FLUSH Flush receive buffer
GOSUB Execute a subroutine within a command file
GOTO Go to a command file label
HELP Display emulator Help
IF Test condition
INQUIRE Prompt for input
INTERACTIVE Enter interactive command mode
KERMIT Enter Kermit mode
KERMIT BYE Logout from the host and exit emulator mode
KERMIT CONNECT Return to emulation mode
KERMIT DOS Execute DOS command
KERMIT END End Kermit Server session
KERMIT EXIT Exit to Windows
KERMIT FINISH Tell server to exit
KERMIT GET Receive files from server
KERMIT HELP Display Kermit help

Table 1-1 Emulator Command List

6

Table 1-1 Emulator Command List (cont’d)

Command Function
KERMIT LOGOUT Tell server to logout
KERMIT RECEIVE Non-server receive file
KERMIT SEND Send file to server
LOG Create a log file of session
ON ABORT Set condition for ON ABORT
ON DEVICE_ERROR Set condition for ON DEVICE_ERROR
ON DISCONNECT Set condition for ON DISCONNECT
ON error_severity Set condition for ON error levels
OPEN Open a file
PRINT EJECT Eject printer page
PRINT ON/OFF Print on/off
PRINT SCREEN Print the text screen
PRINT SCROLLBACK Prints text in scrollback memory plus the screen contents
QUIT Exit emulate mode
READ Read a string from the host or file
READ HOST Read an ASCII record from host into the specified symbol.
READ SCREEN Read screen text into symbol
REPLAY Replay an emulator Log file
RETURN Return from a GOSUB command
SCAN Display the key names
SEND Send ASCII text file to host
SESSION Start a session defined in the Session Manager
SET ABORT Set Abort key checking
SET CDELAY Set delay for sending characters
SET [NO]DDEAUTOINITIALIZE Set DDE auto initialize
SET [NO]DDEAPPPENDINSTANCE Set DDE append instance
SET DDECLIENTTIMEOUT Set timeout value for DDE client commands
SET DDEERVERNAME Set DDE server name
SET DEVICE_ERROR Set device error checking
SET DISCONNECT Set disconnect checking
SET EOF Set the End of File character
SET HOST Create a connection to a remote node
SET LDELAY Set delay for sending lines
SET MESSAGE Set message control
SET ON Set error checking
SET TERMINAL Set terminal characteristics
SET TURNAROUND Set a turnaround character
SET VERIFY Set verify mode
SHOW SYMBOL Display local and global symbol values
STOP Terminate execution of all command files
WAIT Wait for a host string
WIN Launch Windows application
WP5 ON/OFF Enable/Disable WordPerfect 5.x mode
WRITE Write a string to the host or file

Chapter One - Command Language 7

1.5.1 Emulator Command Descriptions

BREAK
BREAK (no arguments)

Sends a 200 millisecond communications break to the communications port.

Valid options:

/LONG
Sends a long (3.5 second) break.

CAPTURE
CAPTURE filename

Captures the data received by the emulator to a file. The data is saved as it appears on the screen in pure text
format.

Valid options:

/APPEND

Open a capture file and appends the text data to the end of file. If no file exists, one is created.

/CLOSE

Close the previously opened capture file. The filename is not required.

/OPEN

Create a capture file.

/OVERWRITE

Open a capture file and overwrite any old copies. If no file exists, one is created.

/SCREEN

Write the current screen contents to the previously opened capture file. This command formats the data
with spaces exactly as it appears on the screen. None of the terminal escape sequences used to format
the screen are written to the capture file.

Example 1: CAPTURE TEST

Creates a capture file TEST.TXT. If TEST.TXT already exists, an error occurs.

8

Example 2: CAPTURE TEST/OPEN
CAPTURE/SCREEN
WAIT “END OF DATA”
CLOSE ERRORS
CAPTURE/CLOSE

Opens a capture file, saves the screen, and then captures data until the string “END OF DATA”
appears.

Example 3: CAPTURE/CLOSE

Closes the log file.

Example 4: CAPTURE/OVER TEST

Opens TEST.TXT and overwrites any old copies.

Example 5: WRITE HOST “MAIL”
WRITE HOST “READ”
CAPTURE MAIL
WRITE HOST “EXIT”

Captures a host mail message into a MAIL.TXT file.

CLOSE
CLOSE logical-name[:]

Where: logical-name is a DOS file logical assigned by the OPEN command.

Closes the logical name previously opened with the OPEN command. If the CLOSE command is not issued,
the logical name is closed upon exiting the emulator.

Valid options:

/ERROR=label
Process continues at the label if an error occurs.

Example: !Get user input into DATE
INQUIRE DATE “Enter current date and time: ”
OPEN/WRITE FILE DATA.LOG ! Open PC file DATA.LOG
WRITE FILE DATE ! Write DATE into FILE
CLOSE FILE ! Close PC file

Places a date and time stamp on a log file by opening the PC file DATA.LOG, writing the date,
and closing the file. DATA.LOG can be added later to the LOG/APPEND command.

Related topics:OPEN

Chapter One - Command Language 9

CLS
CLS (no arguments)

Clears the screen. CLS is the short form of the ERASE SCREEN command.

Example: WRITE HOST “ls”
DELAY 3
INQUIRE FILENAME “Enter name of file to delete: ”
WRITE HOST “rm’’FILENAME’”
CLS

This Unix example lists the contents of a directory, removes the specified file from that directory,
and clears the screen.

Related topics: ERASE SCREEN

CONTINUE
CONTINUE (no arguments)

Resumes execution on the next line of a command file. Used with the ON command to ignore error conditions.

Example: ON ERROR THEN CONTINUE

If an error occurs, the command continues at the next line.

DDE ADVISE
DDE ADVISE variable1 “item name” variable2

Where: Variable1 is the conversation number returned by an earlier DDE CONNECT command.

“Item name” is a string expression that tells the server what data item to monitor.

Variable2 specifies the variable to receive the new data item value. Variable2 changes whenever
the value of the data item in the server application changes.

Creates an Advise Data Link between the emulator (the client) and the server application. The value of the
emulator variable is updated whenever the specified item’s value in the server application changes. An Advise
Data Link can be removed with the DDE UNADVISE command. All Advise Data Links associated with a
conversation are removed when the conversation is disconnected.

Example: DDE ADVISE ‘CONV’ “COUNT” RESULT

Assumes that CONV refers to a conversation with another copy of the emulator as the DDE server
using the ECL topic. An Advise Data Link is created so that when the DDE server’s variable COUNT
changes, the new value is assigned to the variable RESULT in the DDE client copy of the emulator.

Related topics: DDE UNADVISE

10

DDE CONNECT
DDE CONNECT “service name” “topic name” variable

Where: “Service name” is a string expression that corresponds to a DDE server application name. An
empty string (“”) can be used as a wildcard to find all DDE server applications.

“Topic name” is a string expression that corresponds to the desired DDE conversation topic. An
empty string (“”) can be used as a wildcard to find the DDE conversation topics.

Variable specifies the variable to contain the conversation number.

Initiates a DDE conversation between the emulator (the client) and a specified application (the server). Both the
service and topic names must be supported by the server application. If more than one DDE server application
responds to DDE CONNECT, a conversation is initiated only with the first server responding.

The resulting conversation number (a number from 1-10) is stored in the specified variable. This number is used
to specify this conversation in other DDE client commands. A conversation is specified by a service name and
a topic. Use DDE TOPICS command to display a list of available DDE servers and topics.

Example: DDE CONNECT “EXCEL” “DATA.XLS” CONV

Initiates a conversation with Excel, with a topic of DATA.XLS. Places the resulting conversation
number in the variable CONV.

Related topics: DDE DISCONNECT

DDE DISCONNECT
DDE DISCONNECT variable

Where: Variable indicates the conversation number of the conversation to disconnect. This should be the
same number that was returned from the DDE CONNECT command.

Disconnects the specified DDE conversation. Any DDE advise-links associated with the conversation are
removed.

Example: DDE DISCONNECT ‘CONV’

Terminates the conversation associated with the conversation number CONV.

Related topics: DDE DISCONNECTALL

DDE DISCONNECTALL
DDE DISCONNECTALL

Disconnects all DDE conversations initiated by the DDE CONNECT command. Any DDE advise-links
associated with the conversations are removed.

Related topics: DDE DISCONNECT

Chapter One - Command Language 11

DDE EXECUTE
DDE EXECUTE variable “command string”

Where: Variable is the conversation number returned by an earlier DDE CONNECT command.
“Command string” contains the command to execute.

This command sends the specified command string to the server to be executed.

Example: DDE EXECUTE ‘CONV’ “@TEST”

Assumes that CONV refers to a conversation with another copy of the emulator as the DDE server
using the topic ECL. The command sent to the server runs the command file TEST.ECF.

DDE POKE
DDE POKE variable “item name” “value”

Where: Variable is the conversation number returned by the DDE CONNECT command.
“Item name” is a string expression that specifies the data item to change.
“Value” is a string expression containing the data to send to the server.

Sends “value” to the named item in the server application of the specified conversation. This command sets the
server’s item to a specified value.

Example: DDE POKE ‘CONV’ “WELCOME” “Hello!”

Assumes that CONV refers to a conversation with another copy of the emulator as the DDE server
using the ECL topic. The variable WELCOME in the server the emulator is set to a message string
“Hello!”.

DDE REQUEST
DDE REQUEST variable1 “item name” variable2

Where: Variable1 is the conversation number returned by an earlier DDE CONNECT command.
“Item name” is a string expression that tells the server what data item is being requested.
Variable2 specifies the variable to receive the value of the data item.

Requests the value of the item from the server application, and stores the value of that data item into the specified
variable. This value returned for the item may be an empty string if the DDE REQUEST command fails.

Example: DDE REQUEST ‘CONV’ “WELCOME” RESULT

Assumes that CONV refers to a conversation with another copy of the emulator as the DDE server
using the ECL topic. The DDE_REQUEST command retrieves the contents of the variable
WELCOME from the server and places the value in the emulator‘s variable RESULT.

12

DDE UNADVISE
DDE UNADVISE variable “item name”

Where: Variable1 is the conversation number returned by an earlier DDE CONNECT command.

“Item name” is a string expression that tells the server what Advise Data Link is to be terminated.

Removes an existing Advise Data Link for the specified item.

Example: DDE UNADVISE ‘CONV’ “COUNT”

Assumes that CONV refers to a conversation with another copy of the emulator as the DDE server
using the ECL topic, and that an advise-link exists to its variable COUNT. The DDE UNADVISE
command removes the Advise-Data Link.

Related topics: DDE ADVISE

DDE TOPICS
DDE TOPICS “service name” “topic name” variable

Where: “Service name” is a string expression that corresponds to a DDE server application name. An
empty string (“”) can be used as a wildcard to find all DDE server applications.

“Topic name” is a string expression that corresponds to the desired DDE conversation topic. An
empty string (“”) can be used as a wildcard to find the DDE conversation topics.

Variable specifies the variable to receive the server/topic list.

Builds a tab-separated list of DDE server application(s) and topic(s) that are currently running. This list only
contains the server applications that match the name and name specification parameters. The list is stored into
the specified variable as a string, and is empty if a match is not found.

Example 1: DDE TOPICS “” “” TLIST

Creates a list of all DDE server applications that are currently running and places this list into
the variable TLIST.

Example 2: DDE TOPICS “” “SYSTEM” TLIST

Stores a list of all DDE servers that support the System topic into the variable TLIST.

Chapter One - Command Language 13

DELAY
DELAY [dd:hh:mm:]ss

Delays the specified amount of time. All of the fields are optional with the exception of seconds. Maximum
value is 99:23:59:59.

DELAY is intended for command file use. DELAY does not prevent the emulator from accepting emulator
commands sent from the host computer using a DCS private control sequence.

Valid options:

/NODISPLAY

Data received from the host is not displayed on the screen during the delay period.

/NOMESSAGE

Disables display of the delay message.

Example 1: DELAY 5

Delays command file execution for five seconds.

Example 2: @LOGIN
DELAY/NODISPLAY 5
WRITE HOST “ACCOUNTING”
EXIT

Automatically logs a user in, prevents all login messages from displaying on the screen and
starts an accounting application on the host.

Example 3: LOG/OPEN SYSLOG.LOG
DELAY/NOMESS 23:59
LOG/CLOSE SYSLOG.LOG

Creates the SYSLOG.LOG file on the PC. Captures information for one day and closes the file.

DELETE SYMBOL
DELETE SYMBOL symbol-name

Deletes a symbol name from the local and/or global symbol table. The symbol name is required. Wildcarding
is supported. The default is /LOCAL.

Valid options:

/GLOBAL

Deletes the symbol name from the global symbol table.

/LOCAL

Deletes the symbol name from the local symbol table.

14

Example 1: DELETE SYMBOL *A

Deletes all the local symbols that end with “A”.

Example 2: DELETE SYMBOL/GLOBAL VARI??

Deletes all the six letter global symbols that start with “VARI”.

DISPLAY
DISPLAY [[row,column]] [string-expression]

Where: string-expression is a quoted string, lexical, symbol, or combination of the above joined by plus
signs (+) (i.e., “string” + symbol).

Displays single or multiple lines of text to the screen. DISPLAY can process terminal escape sequences, lexicals,
and symbols as part of the string expression. The terminal escape sequence is processed by the selected terminal
type when displaying the emulation window.

An initial cursor position can be optionally specified in brackets [] immediately following the DISPLAY
command. If specified, the cursor moves to the position indicated before the string displays. Specifying a cursor
position of 0 for the row or column positions the cursor at the current row or column position.

By default, data is output to the emulation window. Data can be displayed on the status line or to a dialog box
by by using the /STATUS and /DIALOG options. DISPLAY will send a carriage return and line feed unless
the /NOCR option is used.

Note: Using cursor positioning while outputting data to the status line produces unusual results.

Valid options:

/DIALOG

Displays the text defined by the string-expression in a dialog box.

/NOCR

Do not send a carriage return and line feed.

/STATUS

Displays the text defined by the string-expression on the Status Line.

Example 1: DISPLAY “Hello there”

DisplaysHello there at the current cursor position.

Example 2: DISPLAY [0,40] “Hello there”

DisplaysHello there at the current row, column 40 on the screen.

Example 3: DISPLAY or DISPLAY “”

Outputs a carriage return and line feed at the current cursor position.

Chapter One - Command Language 15

Example 4: DISPLAY /DIALOG “This is a message to the user.”

This example would yield the following dialog box.

Note: The D$BLOCK lexical is not supported with the /DIALOG option.

Example 5: ! ... Additional commands
DISPLAY/NOCR “<CSI>0;0|” ! enable user def. status line
DISPLAY/NOCR “<CSI>0;2|” ! erase status line

! status line message
DISPLAY/NOCR “<CSI>0;3;20| Press ABORT to exit”
! ... Additional commands

This example uses DEC terminal escape sequences.

Example 6: DISPLAY/STATUS “<ESC>[?3h” + “132 columns”

Sets the screen to 132 column mode, and displays “132 columns” on the status line.

Related topics:INQUIRE, Special Features

DOS
DOS [DOS command string]

Executes the DOS command string and returns to the emulator.

If a DOS command string is unspecified, the DOS shell window appears. Any valid DOS command can be
entered in the DOS shell window. To exit from DOS, type EXIT followed by a carriage return.

If a DOS command string is specified, the emulator executes the DOS command and holds the DOS screen.
Pressing any key returns closes the DOS shell window and returns to emulation mode.

When the DOS command is issued by the host computer or from a command file, the emulator automatically
returns to emulation mode without waiting for keyboard input.

Symbols can be used to assign DOS command strings to a more convenient form. For example, DIR :== “DOS
DIR” creates an emulator command that lists DOS directories.

16

Valid options:

/NOWAIT

When specified interactively, the DOS screen is not held until a key is pressed. The DOS command
executes and returns to the emulator without pausing. It has no effect when used in a command file.

Example 1: DOS TYPE READ.TXT

Executes the DOS command TYPE and displays the file READ.TXT in a DOS window.

Example 2: TYPE :== “DOS TYPE”
TYPE READ.TXT

Creates an ECL command TYPE, then displays the DOS file READ.TXT in a DOS window.

Example 3: DOS/NOWAIT DEL TEST.LOG

Switches to a DOS window, deletes the TEST.LOG file, and returns to emulation mode.

DROPDTR
DROPDTR milliseconds

Drops the DTR (Data Terminal Ready) and RTS (Request to Send) lines for the number of milliseconds
specified. If milliseconds is zero or missing, DTR and RTS will be dropped permanently.

EMULATE
EMULATE [match-string-expression]

Puts the emulator into emulation mode from a command file. If emulation mode has been entered from a
command file, pressingEXIT returns to the calling command file rather than to Windows.

The EMULATE command can be used with the ON DISCONNECT command to enter emulation mode and
return to a command file when the connection is lost or the user logs out.

Valid options:

/CASE

Force case sensitivity for the return string comparison. /CASE is invalid when used without the /RE-
TURN_STRING option.

/LABEL=label

Resume execution of the command file at the specified label. /LABEL is invalid when used without
the /RETURN_STRING option.

Chapter One - Command Language 17

/RETURN_STRING = [match-string-expression]

Allows a command file to enter emulation mode and returns control to the command file when a
specific string occurs. This option is an alternate form of [match-string-expression] argument. If both
strings are used, the first string following the EMULATE command takes precedence.

Allows a command file to enter emulation mode and return control to the command file when a specific
string occurs. Execution of the command file resumes at the line immediately following the EMULATE
command unless the /LABEL option is used.

Example: 50: SET DISCONNECT
ON DISCONNECT THEN GOTO 100
EMULATE
EXIT/EM !USER LOGGED OUT

!CONNECTION LOST
100: DISPLAY “ATTEMPTING TO RECONNECT”

@RECONNECT
IF $STATUS GOTO 50
DISPLAY “UNABLE TO RECONNECT”
EXIT/EM

Monitors connect status. If the connection is lost the command file tries to reconnect.

END INTERACTIVE
ENDINTERACTIVE (no arguments)

Terminates interactive mode. This command is not used in command files.

Related topics:INTERACTIVE

ERASE SCREEN
ERASE SCREEN (no arguments)

Erases the screen.

Example: ERASE SCREEN
DISPLAY [10,20] “1. Connect Session 1"
DISPLAY [11,20] ”2. Connect Session 2"
DISPLAY [13,20] “3. Exit emulator”
INQUIRE [14,20] “Enter menu option number: ”
...

Erases the screen before displaying a menu and sends the cursor to Row 1, Column 1.

Related topics: CLS

18

EXIT
EXIT [specific-error]

Where: specific-error is an error code, quoted mnemonic identifier, or symbol. (i.e., EXIT $STATUS)

Terminates processing of the current command file.

EXIT’s behavior differs, depending on the mode of usage (interactive or command file mode). If used in
interactive mode without an error parameter, the emulator exits to Windows. If used with a parameter, the
message associated with the error parameter displays, and no other action is taken.

If used within a command file without a parameter, EXIT passes the error status to the calling routine. If error
checking is enabled and an error parameter is provided, EXIT prints the associated error message.

EXIT passes the status and severity codes of the error to the symbols $STATUS and $SEVERITY. It also saves
the mnemonic for the error in the symbol $STATUSID and the full error message in F$MESSAGE. If the error
message has displayed, bit 15 of the $STATUS symbol is set to 1.

If EXIT is issued from a command file while in emulate mode, emulate mode is exited and the next command
is executed.

Valid options:

/EM

Exit the emulator and return to Windows with the corresponding $STATUS code passed to ERRORLEVEL.
An exit to Windows leaves the modem control signals active. Refer to theDOS ERRORLEVELtopic
for more information.

Example 1: EXIT

Exits the emulator and returns to Windows.

Example 2: LOG FILELIST ! Create FILELIST.LOG file
DELAY 1:00: 00 ! Delay 1 hour
LOG/CLOSE ! Close log file
EXIT ! Exit to emulation mode

Opens FILELIST.LOG, captures host information for 1 hour, closes the log file, and exits.

Example 3: @SET HOST /DISCONNECT
DELAY/NOMESSAGE 2
EXIT/EM

Disconnects from the host, hides all messages and exits the emulator.

Related topics:ON, SET ABORT, SET DEVICE_ERROR, SET DISCONNECT, SET ON, Error Facility,
SET MESSAGE

Chapter One - Command Language 19

FILE
FILE operation protocol filename

Where: Operation is SEND or RECEIVE.
Protocol is one of the available protocols: ASCII, KERMIT, XMODEM, YMODEM, or
ZMODEM.
Filename is the name of the file to transfer.

Performs a file transfer using the specified protocol.

Valid options:

/RENAME

Used with RECEIVE to rename incoming files if they would replace an existing file.

FLUSH
FLUSH (no arguments)

Empties the emulator receive buffer to the screen. Used to insure that all data received from the host has been
removed from the receive buffer and displayed on the screen.

Related topics: WAIT

GOSUB
GOSUB label_name

Transfers execution to a subroutine label located within the command file. Use the RETURN command to exit
the subroutine and resume execution in the calling routine. The calling routine continues at the line following
the GOSUB command. (Usable in command procedures only.)

Related topics: ON, IF, Labels, RETURN

GOTO
GOTO label-name

Transfers program control to the statement following the specified label. (Used in command procedures only.)

Related topics: ON, IF, Labels

20

HELP
HELP [keyword]

Displays useful information about emulator operation, key assignments, features, and commands. Specifying
HELP without a keyword displaysHelp - Index .

IF (CONDITIONAL)
IF condition THEN statement

Tests the value of an expression and executes the statement following the THEN keyword if the test is TRUE.
If FALSE, THEN is ignored, and execution continues with the next command line.

The expression is true if the result:

1) Has an odd integer value between 2147483647 and -2147483648.

2) Has a character string value that begins with any of the letters Y, y, T, or t.

3) Has an odd numeric string value between “2147483647" and ”-2147483648".

The expression is false if the result:

1) Has an even integer value between 2147483647 and -2147483648.

2) Has a character string value that begins with any letter except Y, y, T, t.

3) Has an even numeric string value between “2147483647" and ”-2147483648".

Rules:

1) Symbols used in IF condition expressions are automatically substituted.

2) String comparison operators end in the letterS (.EQS., .LES., .GTS., etc.). Integer comparison operators
do not end in the letterS (.EQ., .LE., .GT., etc.).

3) String comparisons are case sensitive. Therefore, CASE and case are considered unequal. To inhibit case
sensitivity, create the symbol using an implied literal string (:). The string converts to all caps, and can then
be compared. (e.g., in the assignment upper := case, the value of upper is converted to CASE.)

Example 1: COUNT = 0
LOOP: COUNT = COUNT + 1
...
IF COUNT .LE. 10 THEN GOTO LOOP

This routine loops 10 times.

Example 2: INQUIRE ANS “Want to continue [Y/N] (D:N)”
IF .NOT. ANS THEN EXIT

This routine exits unless ANS = Y.

Related topics:Symbols, Lexicals, Error Facility

Chapter One - Command Language 21

INQUIRE
INQUIRE[[row,column]] symbol-name [prompt-string]

Where: prompt-string is a quoted string, lexical, symbol, or combination of the above joined by plus signs
(+) (i.e., prompt-string = “string”+symbol).

Outputs a prompt string and waits for input. The input string is stored in the symbol-name specified. By default, the
symbol-name is a local symbol. To make the symbol global, use the /GLOBAL qualifier.

Like the DISPLAY command, the INQUIRE command can process terminal escape sequences, lexicals, and
symbols in the prompt string.

An initial cursor position can be specified in brackets [] immediately following the command. If specified, the
cursor moves to the position indicated before the prompt string displays. Specifying a position of 0 for the row
or column positions the cursor at the current row or column on the screen.

By default, INQUIRE uses the screen. However, INQUIRE uses the status line when the /STATUS option is
used.

Note: Using cursor positioning while outputting data to the status line or dialog box can produce unusual results
and should be avoided.

INQUIRE will not send a carriage return or line feed unless it is placed within the prompt string or the /CR
option is used for a single line of text.

Valid options:

/CASE

By default, INQUIRE/KEY is not case sensitive. It does not return the S^ indicator with the key names
for alphanumeric keys. Specifying /CASE returns the S^ indicator with uppercase alphanumeric keys.
/CASE is only meaningful when used with the /KEY option.

/CR

Send a carriage return at the end of the prompt string.

/DIALOG symbol-name [prompt-string]

Prompts the user for input from a dialog box rather than from the text emulation window. The user
supplies a symbol name and a prompt string. The dialog box displays the prompt string and an edit
field in which the user can type the symbol value.

/GLOBAL

The symbol name is defined as global.

/KEY

Reads a single keystroke and returns its ASCII key name. The name returned is the same name displayed
when the key is pressed in Scan mode. Key remapping is disabled when /KEY is used. /KEY is useful
for obtaining a single PC keystroke, such as an arrow key.

/LOCAL

The symbol name is defined as local. This is the default INQUIRE condition.

22

/MAX=count

Sets the maximum character count for an INQUIRE input line. If the input data exceeds the max count,
the extra characters are ignored. The input line is not terminated until a carriage return is entered unless
the /TERMINATE option is specified.

/NOECHO

Input data is not echoed to the screen.

/STATUS

Send the prompt string to the status line.

/TERMINATE

Used with the /MAX option to allow an input line to be terminated when the maximum character
count is reached. When /TERMINATE is specified, the input line terminates on a carriage return or
when the maximum number of characters has been entered. /TERMINATE has no meaning when used
without the /MAX option.

Example 1: INQUIRE NUMBER “Enter modem phone number to dial: ”
WRITE HOST “ATDT’’NUMBER’”
WAIT/TIME_OUT=30/ERROR=LATER “CONNECT 2400"
@LOGIN
EXIT
LATER:

DISPLAY ”There is no modem connection, try later."
EXIT

Requests the phone number from the user. The modem is then dialed. If there is a connection,
the user is automatically logged in. If the TIME_OUT criteria is met, then an informational
message is displayed and the command file is exited.

Example 2: TIME_STR="Enter Time:"
INQUIRE/GLOBAL [5,0] TIME TIME_STR

Positions cursor at the 5th line and current column and displays the prompt “Enter Time:”. The
user input string is stored in the global symbol TIME.

Example 3: 50: INQUIRE/KEY KEYSTROKE “<CR><LF>Enter Up Arrow Key”
IF KEYSTROKE="UP" THEN GOTO 100
GOTO50

100: DISPLAY “<CR><LF>You just pressed the Up Arrow Key”

Prompts the user to press the Up Arrow key. The name of the key pressed is stored in
KEYSTROKE. A message is displayed once the correct key is pressed. Otherwise, it loops to
the beginning for another key press.

Chapter One - Command Language 23

Example 4: INQUIRE /DIALOG THEVAR “This is the prompt string”

This example would yield the following dialog box.

Note: The D$BLOCK lexical is not supported with the /DIALOG option.

Example 5: WAIT/TIME_OUT=30 “Username:”
WRITE HOST “SMITH”
WAIT/TIME_OUT=30 “Password:”
INQUIRE/LOCAL/NOECHO PASS “Enter your password: ”
WRITE HOST “’’PASS’”
PASS = “”
EXIT

Starts the login process for SMITH, then prompts the user for the password. Stores user entry
in PASS and sends it to the host. Exits to emulation mode. By defining PASS as a local symbol,
it is removed when the exit occurs.

Example 6: INQUIRE/GLOBAL/NOECHO PASSWD “Password: ”

Displays the prompt string “Password:” on the screen. The input string is stored in the global
symbol PASSWD. The input string is not echoed when it is entered.

Example 7: INQUIRE/STATUS TIME “World time: ”

OutputsWorld time: to the status line and stores the input string in the local symbol TIME.

Related topics:DISPLAY, Display functions, Lexicals, Symbols

INTERACTIVE
INTERACTIVE (no arguments)

Sets interactive command mode. Interactive mode is used to enter consecutive commands without clicking
Execute - Command Line each time. This command has little meaning in command files.

To cancel interactive mode, enter the ENDINTERACTIVE command.

Related topics: ENDINTERACTIVE

24

KERMIT
KERMIT [kermit command string]

Enters Kermit mode. If a command string is not specified, theKERMIT>prompt appears. If a string is specified,
the emulator enters Kermit mode, issues the command and returns to emulation mode.

Example: WRITE HOST “KERMIT”
WRITE HOST “SET FILE TYPE BINARY”
WRITE HOST “SERVER”
KERMIT SEND/END TEST.EXE
WRITE HOST
WRITE HOST “EXIT”

Automatically sets the host Kermit for a binary file transfer, uploads the PC file, TEST.EXE, and exits the host
Kermit mode.

KERMIT BYE
KERMIT BYE (no arguments)

Tells the remote server to logout. The emulator terminates the host session and exits.

KERMIT CONNECT
KERMIT CONNECT (no arguments)

Exits from emulator Kermit mode and returns to host Kermit mode. Does not send any commands to the host
Kermit. (Equivalent to pressingKermit while in host Kermit mode.)

KERMIT DOS
KERMIT DOS [DOS cmd string]

Displays an DOS Shell window. If a DOS command string is not specified, an active DOS shell window appears.
Any valid DOS command can be entered in the DOS shell window. To return to emulation mode, type EXIT.

If a DOS command is specified, an active DOS Shell window displays the result of the command. Click on the
X in the upper right corner of the window and select close to return to emulation mode.

When a DOS command is issued by the host computer or from a command file, the emulator automatically
returns without waiting for keyboard input.

Chapter One - Command Language 25

KERMIT END
KERMIT END (no arguments)

Tells the host server to exit and returns to emulation mode. The host returns to theKERMIT>prompt or to the
system prompt. The action taken depends on the host Kermit implementation.

KERMIT EXIT
KERMIT EXIT (no arguments)

Exits the emulator. EXIT does not send any command to the host Kermit.

KERMIT FINISH
KERMIT FINISH (no arguments)

Tells the host server to exit. The Emulator remains in Kermit mode. The host returns to theKERMIT> prompt
or to the system prompt. The action taken depends on the host Kermit implementation.

KERMIT GET
KERMIT GET [switches] source file [destination file]

Sends a GET command to the server. This causes the server to send the file or files matching the source file
specification to the PC.

The destination file specification is optional. If supplied, the source file is renamed to the destination filename
on the PC. The destination filename can include a path specification.

Multiple files can be received with one GET command by separating the filenames with commas or by using
wildcards.

Valid options:

/END
Terminates host server mode and returns to emulation mode after successful file transfer.

/EOF
Stores a DOS EOF (Ctrl Z) as the last character of the files transferred.

/LOGOUT
Terminates the host session and returns to emulation mode after successful file transfer.

Examples:GET *.DAT \DATA*.*
GET *.DAT \DATA\
GET *.DAT \DATA

Transfers all .DAT files from the host to the \DATA subdirectory.

26

KERMIT LOGOUT
KERMIT LOGOUT (no arguments)

Same as the BYE command.

KERMIT RECEIVE
KERMIT RECEIVE [switches] [d-file]

Receives files from a host running Kermit in non-server mode. Before a RECEIVE command can be issued,
the SEND command must be given to the host Kermit.

Wildcarding is supported. When using wildcards in the host SEND command, do not specify a destination
filename.

A destination filename is only required if you wish to rename the host file being sent.

Valid options:

/EOF
Store a DOS EOF (Ctrl Z) as the last character of the file.

Examples: RECEIVE

Transfers all files sent to the default file transfer directory as specified inSetup - General -
Directories .

RECEIVE \DATA\

Transfers all files sent to the PC’s \DATA subdirectory. When using the RECEIVE command,
you must include the trailing backslash (\) on the path specification.

KERMIT SEND
KERMIT SEND [switches] source file [destination file]

Sends the source files specified to the host Kermit program. Works with server or non-server Kermit programs.
If the host Kermit program is not in server mode, the RECEIVE command must be issued to the host Kermit
program before issuing the SEND command.

The file sent can be renamed or sent to a particular directory on the host computer by supplying the optional
destination field. Wildcarding is supported.

If host directory strings are used in destination file specification, the host Kermit program should not translate
filenames received from the PC. To disable filename translation, issue the following command to the host
Kermit:

SET FILE NAMING LITERAL

Note: This is the VAX/VMS syntax for the command. Its syntax may vary on other systems or it may not be
supported.

Chapter One - Command Language 27

Valid options:

/END
Terminates host server mode and returns to emulation mode after successful file transfer.

/LOGOUT
Terminates the host session and returns to emulation mode after successful file transfer.

/NOEOF
Do not send an EOF (Ctrl Z) character to the host even if Ctrl Z is in the DOS file.

Example: SEND *.DAT [TEST]

Transfers all .DAT files to the [TEST] subdirectory on a VMS host.

LOG
LOG filename

Opens an emulator log file. A log file captures all data received from the host. If the file exists and /OVERWRITE
or /APPEND is not specified, an error results. The default is /OPEN. The default extension is .LOG.

Valid options:

/APPEND

Open a log file and append the log data to the end of file. If no file exists, one is created.

/CLOSE

Close the previously opened log file. The filename is not required.

/OPEN

Create a log file.

/OVERWRITE

Open a log file and overwrite any old copies. If no file exists, one is created.

/PROMPT

Displays the interactive log file prompt. If logging is already enabled, LOG/PROMPT closes the log
file and disables logging. If /PROMPT is used, any other option on the command line is ignored.

Example 1: LOG TEST

Creates log file TEST.LOG. If TEST.LOG already exists, an error occurs.

28

Example 2: INQUIRE TIME “ENTER CURRENT DATE AND TIME: ”
OPEN/WRITE ERRORS ERRMESS.LOG
WRITE ERRORS TIME
CLOSE ERRORS
LOG/APPEND ERRMESS.LOG
WRITE HOST “@BUILD”
WAIT “$”
LOG/CLOSE ERRMESS.LOG

Creates a log file with a date and time stamp which captures error messages generated from
running a VMS COM file.

Example 3: LOG/CLOSE

Closes the log file.

Example 4: LOG/OVER TEST

Opens TEST.LOG and overwrites any old copies.

Example 5: WRITE HOST “MAIL”
WRITE HOST “READ”
LOG MAIL
WRITE HOST “EXIT”

Captures a host mail message into a MAIL.LOG file.

ON ABORT
ON ABORT THEN statement

Defines the course of action when a command file is aborted. The specified action is taken only if the command processor
is enabled for abort error checking. Abort error checking is enabled (SET ABORT) by default.

An ON ABORT action remains in effect until one of the following occurs:

o The command procedure exits, which resets to the ON ABORT condition previously specified.

o Another ON ABORT command is executed.

o The procedure executes the SET NOABORT command.

The default error condition is ON ABORT THEN STOP. If an ABORT action is specified, it overrides actions
specified for previous levels, and sets the default action for any following sublevels to EXIT. The error codes
and mnemonic identifier are stored in the global symbols $STATUS, $SEVERITY, and $STATUSID, even if
error checking is disabled (SET NOABORT).

Related topics: SET ABORT

Chapter One - Command Language 29

ON DEVICE_ERROR
ON DEVICE_ERROR THEN statement

Defines the course of action when an error occurs from a peripheral device, such as a printer or a plotter. The
action is taken only if device error checking is enabled (SET DEVICE_ERROR). By default, device error
checking is disabled (SET NODEVICE_ERROR).

An ON DEVICE_ERROR action remains in effect until one of the following occurs:

o The command procedure exits, which restores the previous ON DEVICE_ERROR condition.

o Another ON DEVICE_ERROR command is executed.

o The procedure executes the SET NODEVICE_ERROR command.

The default error condition is ON DEVICE_ERROR THEN STOP. If a DEVICE_ERROR action is specified,
it overrides the actions specified for previous levels and sets the default action for any following sublevels to
EXIT. When errors occur, the error codes and mnemonic identifier are stored in the global symbols $STATUS,
$SEVERITY, and $STATUSID, even if error checking is disabled (SET NODEVICE_ERROR).

Related topics: SET DEVICE_ERROR

ON DISCONNECT
ON DISCONNECT THEN statement

Defines the course of action when the communications connection is lost. The action is taken when the
disconnect occurs.

When using an RS232 Serial connection, the Carrier Detect signal is monitored to determine the state of the
connection. However, if Modem Control is disabled in the Port Setup dialog box, the state of the connection is
not monitored.

When running over a network, the state of the network virtual circuit is monitored.

The specified action is taken only if disconnect error checking is enabled (SET DISCONNECT). By default,
disconnect error checking is disabled (SET NODISCONNECT).

An ON DISCONNECT action remains in effect until one of the following occurs:

o The command procedure exits, which restores the previous ON DISCONNECT condition.

o Another ON DISCONNECT command is executed.

o The procedure executes the SET NODISCONNECT command.

The default error condition is ON DISCONNECT THEN STOP. If a DISCONNECT action is specified, it
overrides actions specified for previous levels, and sets the default action for any following sublevels to EXIT.
When errors occur, the error codes and mnemonic identifier are stored in the global symbols $STATUS,
$SEVERITY, and $STATUSID, even if error checking is disabled (SET NODISCONNECT).

Related topics: SET DISCONNECT

30

ON (ERROR_SEVERITY)
ON error_severity THEN statement

Defines the course of action taken when an error occurs that is equal to or greater in severity than the specified
error.

The default error condition is ON ERROR THEN EXIT. This condition tells the command process to
CONTINUE when a WARNING error occurs, and execute an EXIT command when an ERROR or SE-
VERE_ERROR condition occurs. The action is taken only if error checking is enabled (SET ON). Error checking
is enabled by default.

These keywords are listed in order of severity and summarize how the command controls error handling:

WARNING The action is performed if a WARNING, ERROR, or SEVERE_ERROR occurs.

ERROR The action is performed if an ERROR, or SEVERE_ERROR occurs. Does not
affect the handling of warning errors.

SEVERE_ERROR The action is performed if a SEVERE_ERROR occurs. Does not affect the
handling of warning and error conditions.

An ON command action is executed only once. After the ON command action is taken, the ON action is reset
to the default (ON ERROR THEN EXIT).

An ON command action can be specified for each active command level. The ON command action applies only
within the command procedure in which it is executed. Upon exiting a command procedure, the prior ON error
conditions are re-established to their previous settings. The error codes and mnemonic identifier are stored in
the global symbols $STATUS, $SEVERITY, and $STATUSID, even if error checking is disabled (SET
NOON).

Note: If the command file contains a GOTO command to a non-existent label, an EXIT command executes,
regardless of the current ON ERROR assignment.

Related topics: SET ON

OPEN
OPEN logical-name[:] file-specification

Where: logical-name is the name used by other commands to reference the open file.

file-specification is the file to open and can include a full path name if desired. The default file
extension is .DAT.

Opens a file for read, write, or append operations and assigns a logical name to the file. This command must precede
a READ or WRITE command for file access. The file stays open until the CLOSE command is executed or an
application exit occurs. If the command file terminates before the opened file is closed, the file remains open.

The same file may be referenced by several open statements. However, each open statement must use a different
logical name.

Note: The logical name HOST does not have to be opened before reading or writing.

Chapter One - Command Language 31

Valid options:

/APPEND

Opens an existing file for write, starting at the end of the file. If the file does not exist, it is created.

If the /READ option is included with /APPEND, the file must already exist. If the file does not exist,
an error occurs.

/ERROR=label

Continues the process at the label if an error occurs.

/READ

Opens an existing file for read only and sets the file data pointer to the beginning of the file. This is
the default for the OPEN command.

/WRITE

Creates a new file for write only. If the file already exists, it is overwritten when the first WRITE
occurs.

If the /READ option is included with /WRITE, an existing file is opened at the beginning of the file.
The file must already exist, otherwise an error occurs.

If the /APPEND option is used with /WRITE, the /WRITE option is ignored.

Example 1: OPEN FILE2 DATA.TXT

Assigns DATA.TXT to the logical FILE2, and opens the file named DATA.TXT for reading.
An error results if the file does not exist.

Example 2: TOP: INQUIRE/STATUS FILE “Enter the data file name:”
OPEN/READ/APPEND/ERROR=ERR DATA ‘FILE’
@PROCEDURE
CLOSE DATA
DISPLAY “’’FILE’ has been updated.”
EXIT

ERR:
DISPLAY “’’FILE’ does not exist”
GOTO TOP

Checks for the filename entered by the user. If the file exists, PROCEDURE.ECF is run. If the
file does not exist, an error message displays and the command file runs again.

Example 3: OPEN/WRITE FILE1 C:\EM320\TEST.DAT

Assigns TEST.DAT to the logical FILE1, and creates a file named TEST.DAT for writing.

Related topics:CLOSE, READ, WRITE

32

PRINT CLOSE
PRINT CLOSE (no arguments)

Closes the open printer, flushes the page and sends the document to the spooler to be printed.

PRINT EJECT
PRINT EJECT (no arguments)

Ejects a page on the printer.

PRINT ON/OFF
PRINT on/off

Turns auto print mode on or off. In auto print mode, every line sent to the screen is also sent to the printer.

Valid options:

/CONTROLLER on/off

Sets printer controller mode in which data passes directly to the printer without displaying on the screen.
Use the /CONTROLLER options to print lines longer than 132 columns to pass control characters.

PRINT SCREEN
PRINT SCREEN (no arguments)

Prints the screen (text screen).

PRINT SCROLLBACK
PRINT SCROLLBACK

Prints the text in scrollback memory plus the current screen.

PRINT SELECTED
PRINT SELECTED

Prints the current selection.

Chapter One - Command Language 33

QUIT
QUIT [specific-error]

Where: specific-error is a quoted mnemonic identifier, error code or a symbol (e.g., EXIT $STATUS).

Works exactly like EXIT except that it drops the modem control signals. See EXIT for a description.

Valid options:

/EM

Quit the emulator and return to DOS with the corresponding $STATUS code passed to ERRORLEVEL.
See theDOS ERRORLEVELtopic for more information.

READ
READ logical-name[:] symbol-name

Where: logical-name is the logical name assigned by an OPEN command or the HOST logical.

Reads an ASCII record from the logical into the specified symbol.

If the READ command references a DOS file, the file is read a record at a time. After each read, the file data pointer
is positioned to the start of the next record. The maximum record size is 255 characters. Records are terminated by
carriage returns. READ is not intended for use with binary files.

Valid options:

/END_OF_FILE=label

Control transfers to the label when the end of the file is detected. If /END_OF_FILE is not used, and
the EOF character is encountered, the process continues at the /ERROR label specified. If neither option
is specified, and the EOF character is encountered, the current ON condition is taken. Valid only with
a DOS file logical.

/ERROR=label

If an error occurs, control is transferred to the label specified. If /ERROR is not used, the current ON
condition action is taken.

Related topics:OPEN, WAIT, WRITE

34

READ HOST
READ HOST

Reads an ASCII record from the currently connected host into the specified symbol.

Valid options:

/ERROR=label

If an error occurs, control is transferred to the label specified. If /ERROR is not used, the current ON
condition action is taken.

/NODISPLAY

Does not display data as it is read. Valid only with the HOST logical.

/TIME_OUT=[hh:mm:]ss

Waits for data until the time specified. Valid only with the HOST logical. A timeout error occurs if no
data is received from the host within the specified time. /TIME_OUT and /ERROR can be specified
simultaneously to redirect command execution.

Related topics:OPEN, WAIT, WRITE

READ SCREEN
READ SCREEN [row,col] Symbol-name

Where: row is the row of the screen to read.

col is the solumn of the screen to start reading. If col is not specified, column 1 is used.

Reads a specific row of text from the screen into the symbol.

Example: READ SCREEN [1,10] TEXT

Reads all the text on line 1 of screen, starting at column 10, into the variable text.

Chapter One - Command Language 35

REPLAY
REPLAY filename

Replays an emulator log file. The filename can contain a full path specification and has a default extension of
.LOG. Refer to theLog File Replaytopic for more information.

Valid options:

/PROMPT

Displays the log file prompt.

Example: DISPLAY/NOCR “<CSI>0;0|”
DISPLAY/NOCR “<CSI>0;3;20|Press Alt A to end demonstration.”
COUNT=0
TOP:

CLS
DISPLAY [5,10] “This demo shows application menus.”
REPLAY MENU1.LOG
DELAY/NOMESS 10
REPLAY MENU2.LOG
DELAY/NOMESS 10
!... additional replay commands
COUNT = COUNT + 1
IF COUNT .LT. 10 THEN GOTO TOP
DISPLAY/NOCR “<CSI>0;1|”
EXIT

Runs a repeating demonstration program of application menu log files. The user-defined status
line is used for messages.

Related topics:LOG

36

RETURN
RETURN (no arguments)

Used to return from a subroutine called by the GOSUB command. Valid only with the GOSUB command.

Related topics: GOSUB

SCAN
SCAN (no arguments)

Enters keyboard scan mode. In scan mode, pressing a key displays its key name. Scan mode is useful for
identifying key names.

SEND
SEND filename

Sends an ASCII text file to the host.

Flow control to the host is provided through character delay (SET CDELAY), line delay (SET LDELAY) and
use of the turnaround character (SET TURNAROUND).

Valid options:

/ANSWERBACK

Send the answerback message specified in theSetup - Terminal dialog box to the host. Since the
answerback message can be concealed, store your password in the answerback message when automatically
sending it to the host in a command file.

Note: SEND/ANSWERBACK cannot be used with any other qualifiers.

/EOF

Sends an End of File marker at the end of the file. Ctrl Z is the default. The SET EOF command can
be used to change the EOF character sent. To send an EOF character without sending data from a file,
use SEND/EOF without specifying a filename.

/FILTER

Removes control characters.

Note: Filter will not passCR, LF, VT, HT, andESC .

Chapter One - Command Language 37

/LINEFEED

Normally, the emulator does not send line feeds that are immediately preceded by a carriage return.
If the /LINEFEED option is specified, all line feeds in the file are sent to the host.

/NOMESSAGE

Supresses the defaultmessage:“Sending <filename>” .

Related topics:SET CDELAY, SET EOF, SET LDELAY, SET TURNAROUND, WRITE.

SESSION
SESSION [path]session-name[ext}

Where: session-name is the name of the session file. By default the session file is retrieved from the
emulators session directory. However, an optional path and file extention can be supplied.

Starts an emulator session using the specified session file.

If the session file does not exist, an invalid file specification error,Status =STS_K_CMD_INVFSPEC , will be
returned.

SET [NO]DDEAUTOINITIALIZE
SET [NO]DDEAUTOINITIALIZE (no arguments)

Sets the DDE auto initialize feature to on or off. When enabled, the emulator automatically enables itself as a
DDE server and broadcasts its name to other Windows applications.

SET [NO]DDEAPPENDINSTANCE
SET [NO]DDEAPPENDINSTANCE (no arguments)

Sets the DDE append instance feature to on or off. When enabled, the emulator appends a unique identifier to
the end of the server name. This allows the execution of multiple instances of the emulator while still being able
to distinguish them as servers.

Example: SET DDESERVERNAME “ms320”
SET DDEAPPENDINSTANCE

Sets the DDE server name for an instance and each subsequent instance. New instances of the
emulator automatically append a unique identifier if the Append Unique Identifier option is
checked in the DDE Setup dialog box.

SET DDECLIENTTIMEOUT
SET DDECLIENTTIMEOUT seconds

Sets the timeout value, in seconds, for the DDE client commands.

38

SET DDESERVERNAME
SET DDESERVERNAME “Server Name”

Sets the name that the emulator responds to as a DDE server. Clients use this string as the “Service Name” when
performing a DDE connect transaction.

This value is linked to the Server Name option in the DDE Setup dialog box.

Example: SET DDESERVERNAME “ms320”

Sets the DDE server name to “ms320”

When changing the server name, the emulator disconnects the instance with the old server name, and reconnects
with the new server name.

Note: Any active conversations with the old server name are terminated.

SET ABORT
SET [NO]ABORT (no arguments)

Enables or disables error checking ofExecute - Abort during execution of a command procedure.

The SET NOABORT command disables abort error checking and resets the ON ABORT error condition to
STOP. The error codes and mnemonic identifier are still updated in the global symbols $STATUS, $SEVERITY,
and $STATUSID.

The SET ABORT and SET NOABORT commands apply to all command procedure levels. SET ABORT is
the default. (Usable in command procedures only.)

Note: SET NOABORT is not recommended - it can prevent a normal exit from a command procedure. If a command
procedure began to loop uncontrollably, it could not be aborted.

Example: SET NOABORT
LOG SYSMESS
DELAY 15:00:00
LOG/CLOSE

Logs all data from the host into SYSMESS.LOG on the PC for 15 hours, say 5pm to 8am. If the
command file is aborted, the log file remains open.

Related topics: ON ABORT

Chapter One - Command Language 39

SET CHARACTER DELAY
SET CDELAY ms

Sets a character delay for the SEND and WRITE commands. The emulator delays the specified number of
milliseconds after sending each character. Specify a character delay to slow down the data rate to prevent
overrunning the host’s terminal buffer. The default value is zero. Maximum value is 255 ms.

Related topics: SEND File, SET LDELAY, SET TURNAROUND

SET DEVICE_ERROR
SET [NO]DEVICE_ERROR (no arguments)

Enables or disables device error checking. A device error can occur from a peripheral device connected to the
serial or parallel port, such as a printer or a plotter as a result of an emulator command. Device errors not
associated with emulator functions are not monitored.

This command disables error checking and resets the ON DEVICE_ERROR condition to STOP. The error codes
and mnemonic identifier are still updated in the global symbols $STATUS, $SEVERITY, and $STATUSID.

The SET DEVICE_ERROR and SET NODEVICE_ERROR commands apply to all command procedure levels.
SET NODEVICE_ERROR is the default. (Usable in command procedures only.)

SET DISCONNECT
SET [NO]DISCONNECT (no arguments)

Enables or disables error checking of the communications connection. Disconnect errors can occur when serial
or network connections are lost.

This command disables error checking and resets the ON DISCONNECT error condition to STOP. The error
codes and mnemonic identifier are still updated in the global symbols $STATUS, $SEVERITY, and
$STATUSID.

The SET DISCONNECT and SET NODISCONNECT commands apply to all command procedure levels. SET
NODISCONNECT is the default. (Usable in command procedures only.)

Related topics: ON DISCONNECT

SET EOF CHARACTER
SET EOF value

Where: value is the decimal value of the ASCII character. Ctrl Z (26) is the default.

Defines the End of File character sent by the /EOF option of the SEND command.

Related topics: SEND File, SET CDELAY, SET LDELAY, SET TURNAROUND

40

SET HOST
SET HOST [node-name]

Connects to a remote node. The SET HOST command must be used with one of the following:

Valid options:

/DEFAULT_PORT

Connects to the default port selected in the Auto Connect Port dialog box. If the port is set to None
or if you are already connected to the default port, an error is returned.

/DISCONNECT

Disconnects from the currently connected port.

/LAST_NODE

Connects to the last successfully connected port. If a previous connection did not exist, an error is
returned.

/PROTOCOL= node

Connects to the specified protocol.

Where: protocol is SERIAL, MODEM, POLYLAT, WINSOCK, etc,...
node is the network node name.

/PASSWORD=password

Used only with the /PORT option, the /PASSWORD option allows the connect password to be specified.

Example 1: SET HOST/SERIAL=COM1

Connects to COM1.

Example 2: SET HOST/WINSOCK=WILLY

Connects to the WINSOCK node WILLY.

Example 3: SET HOST/POLYLAT=MARS

Connects to the LAT node MARS.

SET KEYMAP
SET KEYMAP name

Where: name is the name of a keymap.

Switches the current keymap to the specified keymap.

Chapter One - Command Language 41

SET LINE DELAY
SET LDELAY secs

Sets a line delay for the SEND and WRITE commands. Specifies the time for the emulator to wait after sending
a line before sending the next line. The default is zero. Maximum value is 255 seconds.

If a line delay and turnaround character is specified, the emulator waits until it receives the turnaround character
or the delay expires, whichever occurs first. If SET NOTURNAROUND has been specified, the emulator waits
the full delay after each line.

Related topics: SEND File, SET CDELAY, SET TURNAROUND, WRITE

SET MESSAGE
SET [NO]MESSAGE [message_type]

Where: message_type is Informational, Warning, Error, or Severe_Error.

SET MESSAGE and SET NOMESSAGE enable and/or disable the display of messages. The message_type
determines the category of message affected. All messages below or equal to the message_type specified are
affected. If no message_type options are provided, SET NOMESSAGE affects all messages.

Example: SET NOMESSAGE = WARNING

Disables informational and warning messages.

SET ON
SET [NO]ON (no arguments)

Enables or disables error checking.

SET NOON disables error checking and error message display. However, the error codes and mnemonic
identifier in the global symbols $STATUS, $SEVERITY, and $STATUSID are updated.

The SET ON and SET NOON commands apply only to the current command level. If SET NOON is used in a
command procedure that calls a second procedure, the default (SET ON) is used while executing the second
command procedure. (Usable in command procedures only.)

Related topics: ON error_severity

42

SET TERMINAL
SET TERMINAL characteristic

Sets the terminal characteristics.

Valid options:

/APPLICATION_KEYPAD

Specifies that the keypad keys send application control functions. Limited to DEC terminal emulation modes.

/DATA_BITS=bits

Where: bits is 7 or 8.

Sets the number of communication data bits. The default is 8 bits with parity = none. Limited to Serial
communications.

/DEVICE=terminal

Where: terminal is VT320_7, VT320_8, VT220_7, VT220_8, VT100, VT52, SCO-ANSI, or BBS-ANSI.

Selects the terminal to emulate.

/[NO]ECHO

Controls display of input from the keyboard. If ECHO is set, the data transmitted to the host is locally
echoed to the screen. If NOECHO is set, the data is not echoed by the emulator. In NOECHO mode the
host is expected to echo the data. NOECHO is the default. ECHO should be set on half-duplex systems.

/INSERT

Sets the line editing mode to insert. Limited to DEC terminal emulation modes.

/LIMITED_TRANSMIT

Restricts the transmit speed to between 150 and 180 characters per second. Limited transmit may be
necessary for some half-duplex systems. Limited to Serial communications.

/LINES=rows

Where: rows is 24 - 48.

Sets the screen height to the desired number of rows.

/LOCAL

Sets the emulator to local mode. In local mode, all characters entered from the keyboard are sent to
the screen display processor. Data is not sent to the host and data received from the host is ignored.

/[NO]MODEM_CONTROL

Enables/disables carrier detect monitoring. Modem control should be disabled when using a direct
connection. Limited to Serial communications.

/[NO]NEW_LINE

If enabled, generates a line feed whenever a carriage return is entered.

/NUMERIC_KEYPAD

Specifies that the keypad keys send numeric control functions. Limited to DEC terminal emulation modes.

Chapter One - Command Language 43

/ONLINE

Allows the emulator to communicate with the host. (Disable with the /LOCAL option.)

/OVERSTRIKE

Sets the line editing mode to overstrike. New characters entered into the line replace the existing
characters. /OVERSTRIKE is the system default. Limited to DEC terminal emulation modes.

/PARITY=type

Where: type is Odd, Even, Space, Mark or None.

Sets the communications parity. Parity = none and Data Bits = 8 is the recommended default. Limited
to Serial communications.

/PORT=com port

Where: com port is COM1, COM2, COM3 or COM4.

Selects the communications port. Limited to Serial communications.

/FLOW_CONTROL=type

Where: type is XON, RTS, or None.

Selects the communications flow control protocol. Xon/Xoff is the protocol used by DEC and most
other host systems. Limited to Serial communications.

/SPEED=baud rate

Where: baud rate is 75, 110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, or 115200.

Selects the communications speed. Limited to Serial communications.

/STOP_BITS=num

Where: num is 1 or 2.

Sets the number of stop bits for each data word. One is the recommended setting. Limited to Serial
communications.

/UNLIMITED_TRANSMIT

Does not limit the character transmit rate. This is the recommended setting. (The transmit rate can be
restricted with the /LIMITED_TRANSMIT option.) Limited to Serial communications.

/[NO]WARNING_BELL

Enables/disables a warning bell for operating errors and receipt of a Ctrl G.

/WIDTH=columns

Where: columns is 80 or 132.

Sets the screen width to 80 or 132 columns.

/[NO]WRAP

Controls whether the emulator generates a carriage return and line feed at the end of a line. The end
of the line is determined by the /WIDTH option. If /NOWRAP is specified, the characters written at
the last column position overwrite each other. /WRAP is the default.

44

SET TURNAROUND CHARACTER
SET [NO]TURNAROUND value or quoted string

Where: value is the decimal value of the ASCII character or a quoted character. Line Feed (10) is the
default.

Sets the turnaround character for the SEND command. When a turnaround character is specified, the emulator
waits for the turnaround character to be received from the host before sending the next line.

Turnaround characters perform flow synchronization and help prevent overrunning the host’s terminal input
buffer. If a turnaround character is specified, the SEND operation could hang if a turnaround character is not
received. Clicking onExecute - Abort terminates the operation. If a SET LDELAY is specified with the
turnaround character, it is used as the maximum time the emulator waits before sending the next line. (Affects
the SEND and WRITE command only.)

Examples: SET TURNAROUND = 10
SET TURNAROUND = “<LF>”

Both commands set the turnaround character to a line feed.

Related topics: SEND File, SET CDELAY, SET LDELAY

SET VERIFY
SET [NO]VERIFY (no arguments)

When enabled, displays command lines of a command procedure as they are executed. Also, enables the display
of error messages regardless of whether error checking is disabled. The default is SET NOVERIFY.

SHOW SYMBOL
SHOW SYMBOL [symbol-name]

Displays the local and global values for the specified symbol. If no symbol name is given, all the symbols from
the local and global symbol table are displayed. Wildcarding is supported; an asterisk (*) may be used for variable
length substitution and a question mark (?) for single letter substitution. The default is SHOW SYMBOL
/LOCAL/GLOBAL.

Note: Although SHOW SYMBOL displays local and global symbols of the same name, the local value of a symbol
will override the global value when referenced in a command procedure.

Symbol values are displayed on the screen regardless of the message location.

Chapter One - Command Language 45

Valid options:

/GLOBAL

Displays the value(s) from the global symbol table.

/LOCAL

Displays the value(s) from the local symbol table.

Example 1:SHOW SYMBOL *A

Displays all the symbols that end with “A”.

Example 2:SHOW SYMBOL/LOCAL VARI??

Displays all the six letter local symbols that start with “VARI”.

Related topics:DELETE SYMBOL

STOP
STOP (no arguments)

Terminates the execution of all command files.

Related topics:EXIT

WAIT
WAIT [match-string-expression]

Where: match-string-expression is a quoted string, lexical, symbol, or combination of the above joined
by plus symbols (+) (i.e., “string” + symbol).

Waits for the match string expression to be received from the host. The string must match the host data exactly,
but is not case sensitive unless the /CASE option is specified. WAIT is intended for command file use.

If the WAIT command is issued from the host, it does not prevent the emulator from accepting additional host
commands while it is waiting for the string.

Valid options:

/CASE

Requires the comparison to be case sensitive.

/ERROR=label

Process continues at the label if an error occurs.

/NODISPLAY

Inhibits the display of data from the host.

/NOMESSAGE

Inhibits the display of the WAIT informational message.

46

/NOSTRING_DISPLAY

Inhibits the display of the match string.

/TIME_OUT=[hh:mm:]ss

Sets a maximum time period to wait for the host string match. If the string is not received in the
allotted time, the process continues with the next command line. Specifying a /TIME_OUT qualifier
without a string flushes data received from the host until no data is received for the time specified.
The /TIME_OUT option can be used with the /ERROR option.

Related topics:READ, WRITE

WIN
WIN (Windows command string)

Executes the Windows command string in order to launch a Windows application from within the emulator.

Example: WIN NOTEPAD

Displays the Windows Notepad.

Symbols can be used to assign Windows command strings to a more convenient form.

Example: NOTEPAD:=="WIN NOTEPAD"
NOTEPAD C:\EMULATOR\MODEM.ECF

Creates an emulator command, NOTEPAD, that launches the Notepad editor. The editor then
displays the MODEM.ECF file.

WORDPERFECT MODE
WP5 ON/OFF

Enables or disables WordPerfect version 5.0 mode. WP OFF also disables WordPerfect 5.0 mode. In WP mode,
the emulator’s keyboard assignments are altered to emulate the PC version of WordPerfect.

WRITE
WRITE logical-name[:] [string-expression]

Where: logical-name is a file logical assigned by the OPEN command or the HOST logical. HOST is a
special predefined local symbol that points to the selected communications port.

string-expression is a quoted string, lexical, symbol, or combination of the above joined by plus
signs (+) (i.e., “string” + symbol).

Writes the string expression to the logical name, followed by a carriage return. To suppress the carriage return,
use the /NOCR option.

If information is written to a file, the file pointer is positioned after the data written.

Flow control is provided through character delay (SET CDELAY) and line delay (SET LDELAY).

Chapter One - Command Language 47

Valid options:

/ERROR=label

Process continues at the label if an error occurs.

/KEY_TOKEN= token

Where: token is a valid terminal keyboard token.

Used with the HOST logical, this option sends token value to the host.

/NOCR

No carriage return is sent after the string. A carriage return is sent separately.

/UPDATE

The data previously READ is to be overwritten. Valid only when rewriting the previous record read.
The new data string must be the same length as the previous string or an error results. Valid only with
a file logical opened with the /READ and /WRITE options.

Example 1: WRITE HOST

Sends a carriage return to the host. (Also the same as WRITE HOST “”)

Example 2: WRITE /KEY_TOKEN=BACKSPACE HOST

Sends a backspace to the host.

Example 3: WRITE HOST “SET X:==”"ABC"""

SendsSET X:=="ABC" to the host.

Example 4: P1 = XRAY.DAT
WRITE HOST “ TYPE ‘’P1’”

SendsTYPE XRAY.DAT to the host.

Example 5: READ FILE2 DATA
WRITE/UPDATE FILE2 TEXT

Reads the first record from the logical nameFILE2 into the symbolDATA , then replaces the
data just read with the information in symbolTEXT . Both sets of data must be the same length.
The DOS file must have been opened using /READ and /WRITE.

Related topics:OPEN, READ, SET CDELAY, SET LDELAY, WAIT

48

u
COMMANDFILEPROGRAMMING

OVERVIEW
Command files are DOS text files that contain emulator commands. Command files are useful for
automating tasks such as transferring files, logging on, and defining keyboard configurations.
However, command files are not limited to the above functions. This chapter is devoted to command
language programming while Chapter 1 (Command Language) explains the individual emulator
commands.

This chapter covers the following advanced programming features:

o Symbol assignment and substitution

o Full range of lexical functions (Locate, Extract, etc.)

o Logical operations

o IF processing

o Special display lexical functions

o Command file nesting

o Comprehensive error control

Chapter Two - Command File Programming 49

2.1 DOCUMENTING COMMAND FILES
It is a good programming practice to use comments to document command procedures. Comments are prefixed
with the exclamation point (!). Any data to the right of the exclamation point is ignored. If a literal exclamation
point is needed in a command line, it must appear within a quoted string or it is interpreted as the comment
character. In this example, the boldfaced type is used to set off the comments.

Example: ! This procedure dials a modem number and transfers a text file to the host.
! Format: SENDTXT input-file [output-file]
! Where: P1 is the filename to send, [P2] is the output filename if different
IF P2 .eqs. “” THEN P2 = P1 ! Make sure p2 is defined
ON WARNING THEN EXIT ! Set to EXIT if error
DIAL VAX ! Dial phone directory entry VAX
WRITE HOST “COPY TT: ‘’P2’” ! Set host to receive data to filename p2
WAIT “<CR><NULL> ” ! Wait for prompt
ON WARNING THEN GOTO DONE ! Set to close COPY command if error
SEND ‘P1’ ! Send the file p1
DONE:
SEND EOF ! Close COPY command
EXIT

2.2 PASSING PARAMETERS
Up to eight parameters can be passed to a command file. Each parameter must be separated by a space.

Example: @filename [p1] [p2] ... [p8]
Or, from the host: CSI5|@filename [p1 p2 ... p8] S

T

Commands in the command file utilize the passed parameters by referring to P1 - P8. The value of a passed
parameter is recovered by quoting the parameter with the symbol substitution character‘ (single quote). The
parameter values are automatically converted to uppercase unless they are enclosed in a set of quotes.

Example: The file SEND.ECF contains the string: KERMIT SEND ‘P1’,’P2’

Typing this string at the command prompt:CMD>@SEND FILE1.DAT FILE2.DAT

Tells the emulator to issue the command: KERMIT SEND FILE1.DAT, FILE2.DAT

50

2.3 SYMBOLS
A symbol (also known as variables) is a name to which a character string or integer value is assigned. The
symbol name must begin with an alphabetic character, an underscore (_) or a dollar sign ($), but may contain
other alphanumeric characters. The maximum symbol name length is 31 characters.

Integer values are limited to 16 bits (-32767 to 32767). Strings are a maximum of 255 characters in length and
must be quoted (string = “string”) or assigned using the implied string delimiter (string:=expression).

Sypmbols can be used for the following purposes:

o Synonyms for emulator commands (foreign commands)

o Variables in expressions or command procedures

o Arguments to commands

o Arguments to command procedures

2.3.1 Symbol Types
There are two types of symbols: Local and Global. Local symbols are available as long as the current command
file is executing. Global symbols are permanently defined until deleted or the emulator exits.

The emulator stores symbols in local and global symbol tables. A local symbol table is maintained for each
active command level including emulation mode (no command file executing). These tables are deleted as their
respective command level is terminated. (Local symbols from all command levels above the current level are
available to the current level.) The emulation mode local symbol table is deleted when the emulator is exited.

Note: A new command level is created each time a command file is executed without exiting the current command
file (nesting command files).

Global symbols are accessible by all command levels. The emulator maintains only one global symbol table.

Local symbols are assigned using an equal sign (=). Global symbols are assigned with a double equal sign (==).

Example: KER = “KERMIT” (local)
SS == “SHOW SYMBOL” (global)

2.3.1.1 Permanent Global Symbols

Three permanent global symbols, $STATUS, $SEVERITY, and $STATUSID, are reserved. They hold the error
code and error mnemonic from the most recently executed command.

These symbols are useful when nesting command files. When a command file is complete, control returns to
the calling command file. The status of the exiting command file is stored in $STATUS, $SEVERITY and
$STATUSID for testing by the calling command file. If no error occurs, a status of SUCCESS (1) returns in the
symbols.

Chapter Two - Command File Programming 51

2.3.2 Assigning Symbol Values
The assignment statement equates a symbol to an expression:

symbol-name =[=] expression

An expression can contain an integer value, a symbol name, a quoted string, a lexical function or a combination
of these connected with arithmetic operators. See the Section 2.5.3 (Integer Expressions) for more information.

Example 1: XX == “This is a string” ! Global String
SHOW SYMBOL XX

XX == “This is a string”

Example 2: SUBSTR = F$EXTRACT(5,2,XX) ! Local String
SHOW SYMBOL SUBSTR

SUBSTR= “is”

Example 3: COUNT == 1 ! Global integer
SHOW SYMBOL COUNT

COUNT == 1 Hex=0001 Octal = 000001

Example 4: SS == “show symbol” ! Global String
TEXT== “This is a test” ! Global String
SS TEXT

TEXT== “This is a test”

2.3.2.1 Implied String Assignments

Use a colon with an equal sign (:= or :==) to specify an implied string assignment. Quotes are not required.

Examples: TEXT:= THIS IS A TEST (local)
SS:== SHOW SYMBOL (global)

Leading and trailing tabs and spaces are stripped from implied strings. All other multiple spaces or tabs are
reduced to a single space character.

Implied strings are normally converted to all capital letters. Case toggles on and off using a quote sign (“).

Example: TEXT:== “This is a ”test
SHOW SYMBOL TEXT

TEXT== “This is a TEST”

Enclosing the entire string in quotation marks prevents uppercase conversion.

Example: TEXT:= “This is a test”
SHOW SYMBOL TEXT

TEXT== “This is a test”

52

Pair consecutive quotes (“”) together to embed a quotation mark (“) within a string expression.

Example: TEXT:= “This is a ”"TEST"" line"
SHOW SYMBOL TEXT

TEXT== “This is a ”TEST" line"

Terminate an implied string expression with a carriage return or an exclamation mark (comment character).

Example: TEXT:== This is a ! test
SHOW SYMBOL TEXT

TEXT == “This is a”

An exclamation mark can be included within an implied string assignment by quoting the string.

Example: TEXT:== “This is a test!”
SHOW SYMBOL TEXT

TEXT == “This is a test!”

2.4 LABELS
Labels are names used to symbolically reference a location within a command file.

Example: LOOP: IF COUNT .EQ. 10 THEN GOTO DONE
COUNT=COUNT+1
GOTO LOOP
DONE: DISPLAY “DONE”

Labels are useful for redirecting command file execution (GOTO label). They are also used for marking the
beginning of a D$BLOCK text block.

A label is always followed by a colon (:). Any printable ASCII character can be used in a label name. Labels
have a maximum length of 32 characters, including the colon.

Chapter Two - Command File Programming 53

2.5 EXPRESSION EVALUATION
Expressions evaluate to either string or integer values, depending on the type of value used in the expression
and the operator used to modify or compare them. Table 8-1 lists the expression evaluation rules. If “any value”
is a string value, it is converted to an integer value before the operation is performed (except string compare).

2.5.1 String to Integer Conversion
Strings containing numbers are converted to their integer values. For example, the string “64" is converted to 64.

Alphabetical strings are converted to the integer 1 if the string begins with T, t, Y, or y. If the string begins with
any other letter, the string is converted to integer 0.

2.5.2 String Expressions
A character string expression is an expression that evaluates to a string value. A character string expression can
contain character strings, lexical functions that evaluate to strings, and symbols that evaluate to strings. They
can also contain groups of strings connected by operators. Whenever values are connected by one or more
operators, all values must be string expressions for the result to remain a string expression.

Examples: FILENAME= “XRAY.DAT”

TEXT = “TIME” + “OUT”

COUNT = “TEN”

TOTAL = “THE TOTAL IS ” + COUNT

A String value unrepresented by an alphabetical character is inserted into a string with a pair of angle brackets.

Example: FF = “<12>” !FF = Form Feed

Expression Result
Integer value Integer
String value String
Integer lexical function Integer
String lexical function String
Integer symbol Integer
String symbol String
+,-,or NOT any value Integer
Any value .AND. any value Integer
Any value .OR. any value Integer
String + or - string String
Any value * or / any value Integer
Any value (string compare) any value Integer
Any value (arithmetic compare) any value Integer

Table 2-1 Expression Modes

54

2.5.3 Integer Expressions
An integer expression is an expression that evaluates to an integer value. An integer expression can contain
integers, lexical functions that evaluate to integers, and symbols that evaluate to integers. They can also contain
groups of integers or strings connected by arithmetic operators, logical operators, and comparison operators.

Integer values must be specified as decimal numbers unless preceded by a Radix operator. Hexadecimal numbers
use %X while Octal numbers are specified using %O.

Examples: COUNT = 10 ! DECIMAL 10
HEX = %XC ! HEX C
OCTAL = %012 ! OCTAL 12
SUM = 1 + 7 + COUNT

2.5.4 Expression Substitution
This feature is useful for debugging when SET VERIFY is in effect. Early evaluation of an expression can be
forced by the use of the apostrophe (‘) substitution operator. The expression being evaluated must be enclosed
in parenthesis and be preceded by the apostrophe.

Example: IF ‘(a + b) .eq. ‘(c - d) THEN GOTO END

The value ofa + b andc - d are evaluated and their values are compared to see if they are equal.
If equal, the control continues at labelEND. The apostrophe does not change the final result.

Expression substitution is useful when using SET VERIFY to determine the result of an evaluation.

Formal evaluation of an expression occurs left to right within the parentheses. An error results if the expression
is unbalanced causing an unresolvable evaluation. See also, Section 2.12 (Symbol and Lexical Substitution).

Example: SET VERIFY
A = 5
B = ‘A * 2
C = ‘(A + B)
D = ‘((A + B) - C)
IF ‘(A + B) .eq. ‘(C + D) THEN ANS = “TRUE”
IF ‘((A + B) .eq. (C + D)) THEN ANS = “TRUE”

Read from a command file, these expressions would evaluate and display to the screen as:

A = 5
B = 5 * 2
C = 15
D = 0
IF 15 .eq. 15 THEN ANS = “TRUE”
IF 1 THEN ANS = “TRUE”

Chapter Two - Command File Programming 55

2.6 OPERATORS IN EXPRESSIONS
Operators connect two or more elements within an expression. Some are mathematical symbols like the plus
sign (+). Others specify logical and comparison operations and consist of letters enclosed in a set of periods.

If more than one operator appears in an expression, the operators are executed in order of precedence. The higher
the precedence number, the higher the priority of the operator. Operators of equal value are executed from left
to right.

Parentheses override the order operators are evaluated. Expressions enclosed in parentheses are evaluated first.

Operator Precedence Description

+ 7 Unary + (Positive number)

- 7 Unary - (Negative number)

∗ 6 Multiply

/ 6 Divide

+ 5 Add two numbers or string concatenation.

- 5 Subtract two numbers or string reduction.

.eqs. 4 String equal test

.nes. 4 String not equal test

.ges. 4 String greater or equal test

.gts 4 String greater than test

.les. 4 String less or equal test

.lts. 4 String less than test

.eq. 4 Equal to

.ne. 4 Not equal to

.ge. 4 Greater or equal to

.gt. 4 Greater than

. le. 4 Less or equal to

.lt. 4 Less than

.not. 3 Logical Negate (1’s Compliment)

.and. 2 Logical AND

or. 1 Logical OR

Table 2-2 Operator Precedence

56

2.6.1 String Operations
String operators are used to concatenate or reduce strings. The+ operator is used for concatenation and the-
operator is used for reducing a string.

A string concatenation (+) adds two strings together to form a longer string.

A string reduction (-) subtracts two strings by removing the string following the minus sign from the first string.
If the second string occurs more than once in the first string, only the first occurrence of the string is removed.

Example 1: A = “MYFILE” + “.DAT”

Result: MYFILE.DAT

Example 2: B = “FILE NAME FILE.DAT” – “FILE ”

Result: NAME FILE.DAT

Note: When concatenating or reducing strings, both operands must be strings or result in an integer.

2.6.2 Arithmetic Operations
Arithmetic operators are used to perform calculations in integer expressions. The result of an arithmetic
operation is an integer. The following operators are valid:

If string values are used as operands to arithmetic operations, the strings convert to integers first. See Section
2.5.1 (String to Integer Conversion) for more information.

In arithmetic operations, all non-decimal values (values specified using radix operators) convert to their decimal
equivalent.

Examples: A = 5 + 10 / 2 ! 10

B = 5 * 3 – 4 * 6 / 2 ! 3

C = 5 * (6 – 4) – 8 / (2 – 1) ! 2

D = –5 + 4 ! -1

E = 8 + “1" ! 9

F = %X1f + %O17 – %D10 ! 36

Symbol Operation
+ Add
- Subtract
/ Divide
∗ Multiply
+ Unary plus sign
- Unary minus sign

Table 2-3 Arithmetic Operators

Chapter Two - Command File Programming 57

2.6.3 Logical Operations
Logical operators are used to perform logical functions on integers or to create expressions that perform Boolean
arithmetic. The result of a logical operation (.NOT., .AND., .OR.) is an integer value.

Examples: A = %X15 .OR. %X12 ! Decimal = 23

A = %X15 .AND. %X12 ! Decimal = 16

.NOT. %X15 ! Decimal = -22

Logical operators can be used in a logical sense as well as arithmetic. An integer has a logical value of true (1)
if it is odd (low order bit=1). A character string is true if it begins with Y, y, T, or t. An integer has a logical
value of false (0) if it is even (low order bit=0). A string value is false if the first character is not a T, t, Y or y.

Example: B = %X200 .OR. %X201

This expression performs a logical OR on two values. The resulting symbol is True and has a value
of 513 (odd) or 201 Hex. Of the original operands, 200 Hex is False and 201 Hex is True.

2.6.4 String Comparisons
String comparison operators are used to compare character strings. String comparison results are based on the
binary value of the string characters. See Appendix B for a table of ASCII character values. The result of a string
comparison is the integer 0 (False) or 1 (True).

The following are the string comparison operators:

The following rules apply to string comparisons:

o The comparison is on a character by character basis that stops as soon as two characters do not match.

o In comparisons of different length strings, the shorter string is padded on the right with null (00)
characters before the operation is performed.

o Lowercase letters have a higher numeric value than their corresponding uppercase letters.

Operands in string comparisons are assumed to be string expressions. If an integer expression is specified as an
operand, it is converted to a string before the comparison.

Operator Definition
.EQS. String equal to
.GES. String greater than or equal to
.GTS. String greater than
.LES. String less than or equal to
.LTS. String less than
.NES. String not equal to

Table 2-4 String Comparison Operators

58

If a character string is not enclosed in quotes, the string is assumed to be a symbol name.

Examples: “ABC” .LTS. “abc” ! True (1)
“TRUE” .EQS. 1 ! False (0)
“ABC” .GTS. “DEF” ! False (0)
“CAT” .EQS. “CATS” ! False (0)

CANDY :== MARS BAR
“MARS BAR” .EQS. CANDY ! True (1)

2.6.5 Arithmetic Comparisons
Arithmetic comparison operators compare integer values. The result of an arithmetic comparison is an integer.
If the result is true, the expression result is 1. If the result is false, the expression is evaluated to 0.

The following is a list of the arithmetic comparison operators:

Operands in arithmetic expressions are assumed to be integer expressions. If a character string is specified as one
of the operands, it is converted to an integer before the comparison is performed. If a character string begins with an
upper- or lowercase Y or T, it is converted to a 1. If the string begins with any other letter, it is converted to 0. If the
string consists of characters that form a valid number, the number is converted to an integer.

2.6.6 Radix Operators
There are three special operators recognized for specifying the radix (number system) for integers. Decimal is
the default and %D is not required when specifying decimal values.

Example: TOTAL = 100 + %X64 + %O144
SHOW SYMBOL TOTAL

TOTAL = 300, HEX = 012C, OCTAL = 000454

Operator Definition
.EQ. Equal to
.GE. Greater than or equal to
.GT. Greater than
.LE. Less than or equal to
.LT. Less than
.NE. Not equal to

Table 2-5 Arithmetic Comparison Operators

Operator Meaning Example Decimal Value
%D Decimal %D100 100
%X Hex %X64 100
%O Octal %O144 100

Table 2-6 Radix Operators

Chapter Two - Command File Programming 59

2.7 SPECIAL CHARACTERS

2.7.1 Input Conversion
ASCII codes that are unspecified by a printable character can be inserted into strings using their numeric value.
To specify an ASCII character by its value, enclose its numeric equivalent inside angle brackets < >.

Example: STRING:==“<7>Attention”

Inserts a bell into the string by specifying the decimal equivalent for an ASCII bell character.

The most commonly used characters can also be specified by a set of mnemonics.

Example: STRING:== “<BELL>Attention”

Unrecognized numeric characters and values greater than 255 are ignored. Radix operators are
also supported within the angle brackets.

Mnemonic Decimal
Value

Mnemonic Decimal
Value

Mnemonic Decimal
Value

Mnemonic Decimal
Value

NULL 00 DLE 16 GS 29 SS2 142
SOH 01 DC1 17 RS 30 SS3 143
STX 02 XON 17 US 31 DCS 144
ETX 03 DC2 18 SP 32 PU1 145
EOT 04 DC3 19 DEL 127 PU2 146
ENQ 05 XOFF 19 IND 132 STS 147
ACK 06 DC4 20 NEL 133 CCH 148
BELL 07 NAK 21 SSA 134 MW 149
BS 08 SYN 22 ESA 135 SPA 150
HT 09 ETB 23 HTS 136 EPA 151
LF 10 CAN 24 HTJ 137 CS 155
VT 11 EM 25 VTS 138 ST 156
FF 12 SUB 26 PLD 139 OSC 157
CR 13 ESC 27 PLU 140 PM 158
SO 14 FS 28 RI 141 APC 159
SI 15

Table 2-7 Mnemonic Table

60

Conversion of numeric values enclosed in angle brackets is prevented by using a double set of brackets << >>. Using
a double set of angle brackets results in a numeric string enclosed in a set of single brackets < >.

Examples: A = “a b c <68>” ! “a b c D”
B = “a b c <%X44>” ! “a b c D”
C = “a b c <<44>>” ! “a b c<44>”
D = “<%X7e>,<<abc>>,<<256>>” ! “~,<abc>,<256>”
E = “<ESC>[10;20H” ! 27"[10;20H"

2.7.2 Output Conversion
Non-printable characters and characters specified by enclosing their numeric value in angle brackets < >, are
displayed in two ways:

1) Their binary value is sent directly to the screen processor. In this case, the character performs its specific
function (e.g., <7> rings the bell) or appears as a character if it is printable (e.g., <%x41> is an A).
Commands such as DISPLAY and INQUIRE process data in this manner.

2) The non-printable character or character enclosed in angle brackets displays as a mnemonic or numeric
value enclosed in brackets. The output from SHOW SYMBOL and SET VERIFY appears this way.

Example: TEST="<7>This is a test"
SHOW SYMBOL TEST

TEST = “<BELL>This is a test”

DISPLAY TEST

This is a test (also rings the bell)

Non-printable ASCII codes are control characters with numeric values below 32 decimal and ASCII codes with
values of 127 to 255. The more frequently used control codes are output as mnemonics instead of decimal values.

Mnemonic Decimal Value Mnemonic Decimal Value
NULL 00 SI 15
BELL 07 ESC 27
LF 10 DCS 144
FF 12 CSI 155
CR 13 ST 156
SO 14

Table 2-8 Mnemonic Table Output Conversion

Chapter Two - Command File Programming 61

2.8 FOREIGN COMMANDS
Symbols can be defined to create personalized commands that execute as if they were part of the emulator
command language. These assignments are called foreign commands.

Example: NUMSTR:== THIS IS A TEST
SS :== SHOW SYMBOL
SS NUMSTR

NUMSTR = “THIS IS A TEST”

When the foreign command, SS, is executed from the command line or command file, it is recognized as a
foreign command and the symbol value is substituted and executed. The command executed by the com-
mand processor is:

SHOW SYMBOL NUMSTR

Up to eight parameters (P1...P8) can be passed to a foreign command. However, in order to process the
parameters, the foreign command must execute a command file.

Example: TYPE :== @DOSTYPE

Where: The command file DOSTYPE.ECF contains:

! ECL FILE TO TYPE A DOS FILE
IF P1 .EQS. “” THEN GOTO ERROR ! Error if no file
DOS TYPE ‘P1’ ! Type DOS File
EXIT ! Exit
ERROR:
DISPLAY “ERROR - NO FILE SPECIFIED”
EXIT

To execute the foreign command to type a DOS file, enter:

TYPE README.TXT

Foreign commands are useful for creating short synonyms for lengthy emulator commands, creating new
emulator functions, or changing an emulator command verb to one you like better.

Examples:KS*END:== KERMIT SEND
HK:== HELP KEYS
LOGS*CREEN:== LOG/SCREEN/OVERWRITE

Placing an asterisk within a foreign command symbol defines the minimum number of characters that must be
entered before it is recognized by the command processor. For example, LOGSCREEN requires thatLOGS be
entered. Additional characters entered thereafter must match the corresponding character in the command exactly.

62

2.9 LEXICALS
Lexicals are functions that return information about character strings and other items. Lexical functions are not
enclosed in quotation marks and often require an argument. Lexicals can be used in expressions in the same
manner as character strings, integers, and symbols.

F$EXTRACT
F$EXTRACT(offset,length,string)

Extracts a substring from a string expression.

Arguments:

Offset
An integer value representing a starting position for the extract. Offsets start at 0. The total length of
the string, minus one, is the maximum offset value.

Length
An integer value representing the number of characters to extract from the string. A maximum value
of 255 can be used to extract the remaining portion of the string.

String
The string expression to extract the substring from.

Return Value: A character string extracted from the argument string.

Example 1: SUBSTR=F$EXTRACT(10,3,"The quick fox jumped.")
SHOW SYMBOL SUBSTR
SUBSTR="fox"

Example 2: LAZY = “The quick fox jumped.”
SUBSTR=F$EXTRACT(10,3,LAZY)
SHOW SYMBOL SUBSTR
SUBSTR="fox"

F$GETINFO
F$GETINFO(item)

Returns information about the item requested.

Arguments:

Item
The name of the Item to return information about.

Return Value: An integer or string value.

Chapter Two - Command File Programming 63

Valid Item Names:

COLOR_SUPPORT Returns TRUE if color support is enabled and FALSE if it is not. Color support
is always FALSE if the PC has a monochrome monitor.

(“CONNECT”) Returns TRUE if the emulator is online (connected). If modem control is disabled
when communicating over a COM port, connection status is always true. Con-
nection status is FALSE when the emulator is offline (no connection).

(“CONNECT_NAME”) Returns the name of the current RS232 or network connection.

Example: DIAL 123-4567
IF F$GETINFO(“CONNECT”) THEN GOTO LOGIN
...

If the modem is connected, the command file jumps to LOGIN label.

F$LENGTH
F$LENGTH(string)

Returns the total number of character in a string.

Arguments:

String
The string expression.

Return Value: An integer value for the length of the string.

Example: TEXT:==This is a test
LEN=F$LENGTH(TEXT)
SHOW SYMBOL LEN

LEN = 14 Hex=000E Octal = 000016

F$LOCATE
F$LOCATE(substring,string)

Searches for a character substring within a string and returns the substring’s offset. If the substring is not found, the
function returns the length of the original string. The first character position is offset 0.

Arguments:

Substring
The character string to search for.

String
The string searched.

Return Value: An integer value representing the offset of the substring argument.

64

Example 1: TEXT="This was a test"
OFFSET=F$LOCATE(“was”,TEXT) !Locate “was”
SHOW SYMBOL OFFSET !Show the offset when found

OFFSET = 5 Hex=0005 Octal = 00005

Example 2: TEXT="This is a test"
OFFSET=F$LOCATE(“TTTT”,TEXT) !Will not find “TTTT”
SHOW SYMBOL OFFSET !Offset=length if not found

OFFSET = 14 Hex=000E Octal = 000016

Example 3: ! The following example requests a string and prints:
! “THE” FOUND If “THE” was entered as part of the string.
! “THE” NOT FOUND If “THE” was not found in the input string.
INQUIRE DATA “ENTER A TEXT STRING: ”
OFFSET=F$LOCATE(“THE”, DATA)
IF F$LENGTH(DATA) .EQ. OFFSET THEN GOTO NOT_FOUND
DISPLAY “”"THE"" FOUND"
EXIT
NOT_FOUND:
DISPLAY “”"THE"" NOT FOUND"

F$MESSAGE
F$MESSAGE(status code)

Returns the message string associated with the status code.

Arguments:

Status code
An expression that translates to either a status message mnemonic (e.g.,"INVALARG") or a status
message number (e.g.,1248). Using $STATUS or $STATUSID as the status code returns the current
error/status message. See Table 8-12 (Error Messages and Status Codes).

Return Value: The complete message string for the status code.

Example: WP XXX
ERROR_MSG=F$MESSAGE($STATUS)
SHOW SYMBOL ERROR_MSG

ERROR_MSG="CMD-W-INVKEYW, Invalid qualifier or keyword - XXX"

Chapter Two - Command File Programming 65

2.10 DISPLAY LEXICALS
Display lexicals are special lexical functions used with the DISPLAY and INQUIRE commands. Arguments to
display lexicals must be strings or string expressions enclosed in parentheses. The display lexicals currently
supported are D$BLOCK and D$BOX.

D$BLOCK
D$BLOCK (row, column [,label])

Where: label is a symbol or quoted label name.

Displays a block of text. The text block is defined between two block markers{ and}. If the optional label is
not provided, the block of text must follow the DISPLAY command (see Form 1). Command execution
continues following the end of block marker.

If the optional label is provided, the text block referenced must not lay in the execution path of the command
procedure (see Form 2).

Note: Block markers must be on a line by themselves.

Form 1 DISPLAY D$BLOCK(10,40)
{
Line one of text.
Line two of text.
}
... next command ...

Form 2 INQUIRE NAME D$BLOCK(10,40,"LABEL1")
... additional commands ...
EXIT
LABEL1:
{
Line one of text.
}

66

D$BOX

Uses line drawing characters to display a box on the screen.

Form 1 D$BOX (upper left row, column, lower right row, column)

Arguments:

The row and column positions for the upper-left and lower-right corners for the box.

Form 2 D$BOX (row offset, column offset)

Arguments:

The row and column offset for the lower-right corner. The offset is specified relative to the current cursor
position. The current cursor position is used for the upper-left corner.

2.11 SYMLEXES
Symlexes are special symbols that function similar to lexicals. They are especially valuable for defining control
sequences that require arguments passed to them at run time.

Example: E$CUP == “<ESC>[$1s;$2sH”

Defines a Symlex called E$CUP (cursor position control sequence) with 2 string arguments ($1s
and $2s) that are passed at run time.

DISPLAY E$CUP(1,1)

Uses E$CUP to position the cursor to row 1, column 1.

2.11.1 Defining a Symlex
Symlexes are defined in the form:

A$A... == “A...$1x...$2x...”

Where: A is any alphanumeric character.
A... is one or more alphanumeric characters.
$1 is the first argument.
x is s or n. S identifies the argument as string.N identifies the argument as numeric.
$2 is the second argument (etc.).

Symlex names must have a dollar sign as the second character of the name ($). Any other character can precede
or follow the dollar sign. A maximum of eight arguments can be defined in a symlex definition. Each argument
must start with a dollar sign and be followed by the argument number and argument type identifier.

When string arguments are substituted at run time, the argument value is passed as a string and quoting is not
necessary. If a symlex argument is defined as numeric, it is assumed to be an integer value, symbol, lexical,
expression, or quoted string.

Chapter Two - Command File Programming 67

If a symlex name is defined that conflicts with a lexical function name, the symlex is ignored. Symlexes can be
used wherever symbols or lexicals are accepted.

Example 1: E$CUP == “<ESC>[$1n;$2sH”

Defines a global symbol, E$CUP, that sets the cursor to $1n row, $2s column (parameter $1n
is defined as numeric and $2s is defined as a string).

DISPLAY E$CUP(“10",30)

Uses the E$CUP symlex to position the cursor to row 10, column 30.

Example 2: U$DEFKEY == “<ESC>P1;1|$1s/$2n<ESC>\”

Defines a symlex for loading a VT320 UDK (User-Defined Key). Argument $1s is the key
identifier and $2n is the key definition string.

DISPLAY U$DEFKEY(34,"53484f5720555345520d")

Uses the U$DEFKEY symlex to define UDK20 as “SHOW USER<CR>”

Example 3: A$BOLD == “<ESC>[1m” !Bold Attribute
A$UND == “<ESC>[4m” !Underline
A$REV == “<ESC>[7m” !Reverse Video
A$RST == “<ESC>[m” !Reset Attributes

Defines a set of symlexes for setting VT320 video attributes.

DISPLAY A$BOLD + “ BOLD ” + A$RST

Displays the word BOLD in bold and then resets the video attributes.

Example 4: U$DCSWSL == “<CSI>0;3;0|$1n<ST>”
SETUDSL== “DISPLAY U$DCSWSL (”"""USER DEFINED STATUS LINE"""")"

Defines global symbol SETUDSL to write a string to the user defined status line using the
symlex U$DCSWSL. The symlex uses a DCS Private Control Sequence. (Parameter $1n is
defined as numeric).

SETUDSL

Writes the string USER DEFINED STATUS LINE to the status line using the symbol
U$DCSWSL. The four quotation marks are necessary to send a quoted string to the symlex.

68

2.12 SYMBOL AND LEXICAL SUBSTITUTION
When processing a command string, the command interpreter performs substitution by replacing the symbol
names or lexical functions with their current values.

2.12.1 Automatic Symbol Substitution
In certain contexts, the command interpreter assumes that a string of characters is a symbol name or lexical
function. In that case, substitution is automatic and substitution operators are not required or recommended.
Automatic symbol substitution takes place under the following contexts:

o On the right side of an = or == assignment statement (but not an := or :== assignment).

o At the beginning of a command line when the symbol is not followed by a symbol assignment operator.

o On arguments for lexical functions.

o On arguments to certain commands such as DISPLAY or WRITE.

Symbols or lexicals in other contexts must be enclosed within a set of substitution operators in order to translate.

2.12.2 Substitution Using Apostrophes
The apostrophe is normally used for symbol substitution. The ampersand is reserved as a special substitution
character. See Section 2.12.3 (Ampersands). To substitute a symbol or lexical value, enclose the symbol or
lexical name within a set of apostrophes (‘symbol_name’).

If symbol substitution is desired within a quoted string, two apostrophes must be placed in front of the symbol
(i.e., “’’symbol’”) to force substitution.

Example 1: COUNT = 0
TOTAL = COUNT + 1

Evaluated as: TOTAL = 0 +1.

Symbol substitution automatically occurs to the right of a symbol assignment statement.

Example 2: SS := SHOW SYMBOL
SS $STATUS

Evaluated as: $STATUS = 1 Hex = 0001 Oct = 00001

Symbol substitution occurs automatically on the first word of a command line. SS is defined
as a synonym for Show Symbol and is executed as a foreign command.

Example 3: TEXT = “This is it.”
STR = F$EXTRACT(5,2,TEXT)

Evaluated as: STR = F$EXTRACT(5,2,"This is it.")

Symbol substitution occurs automatically on any arguments to a lexical function.

Chapter Two - Command File Programming 69

Example 4: TOTAL=1
COUNT=2
IF COUNT .EQ. TOTAL THEN GOTO DONE

Evaluated as: IF 1 .EQ. 2 THEN GOTO DONE

Symbol substitution in an IF statement. TOTAL and COUNT are both assumed to be symbols.
Their values are substituted before evaluating the condition.

Example 5: COUNT = 1
PARAM = P’COUNT’

Evaluated as: PARAM = P1

The use of single quotes forces the substitution.

Example 6: FILENAME := X.DAT
STR = “’’FILENAME’ has been copied.”

Evaluated as: STR ="X.DAT has been copied."

Symbol substitution is forced by the usage of double, single quotes within the quoted string.

2.12.3 Substitution Using Ampersands
In addition to the apostrophe, the command interpreter recognizes a special substitution operator, the ampersand.
The difference between the two is the time when symbol substitution occurs. Symbols preceded by the
apostrophe are substituted during phase one; the ampersand is done in phase two. For additional information,
refer to theThree Phases of Symbol Substitutiontopic.

In many instances, the apostrophe and ampersand operators are equivalent.

Example: CMD>HELP ‘TOPIC’
CMD>HELP &TOPIC

These two commands evaluate identically.

However, the following example shows how the results can vary.

Example: CMD>B="XXXXXX"
CMD>A="&B"
CMD>SHOW SYMBOL A
A = “&B”
CMD>DISPLAY ‘A’
XXXXXX
CMD>B = “YYYYY”
CMD>DISPLAY ‘A’
YYYYY

In the first part, SHOW SYMBOL A displays &B because the ampersand is not interpreted within
a quoted string. However, &B is interpreted when referenced by the DISPLAY ‘A’ command. In
the second part, B was redefined and the results changed accordingly.

70

The following restrictions apply to the use of the ampersand:

o It cannot be used within a character string to request symbol substitution.

o It must be preceded by a space or another delimiter.

o It cannot be used to request substitution inside a quoted string.

o To request substitution using the ampersand, append the ampersand to the beginning of the symbol
name. Do not use a trailing ampersand.

Ampersands are most effective when used with the apostrophe to affect the order of substitution.

Example: Assume the following symbol definitions:A:=TRY B:=THIS C:=ONE
Assume that TEST.ECF contains: COUNT=1

START:SHOW SYMBOL &P’COUNT’
COUNT=COUNT+1
IF COUNT .GT. 3 THEN EXIT
GOTO START

This command yields the results: CMD>@TEST A B C
A = “TRY”
B = “THIS”
C = “ONE”

The command file displays the values of passed parameters P1 - P3 using the SHOW SYMBOL command.
During the phase one of command interpretation, COUNT is replaced by its current value (1 - 3).

By using the ampersand, P’COUNT’ (P1 - P3) is substituted in the phase two. Therefore, P1 becomes symbol
A, P2 becomes symbol B, and P3 becomes symbol C. The final substitution results in the command lines:

SHOW SYMBOL A (value = TRY)
SHOW SYMBOL B (value = THIS)
SHOW SYMBOL C (value = ONE)

It is impossible to obtain the above results using the apostrophe substitution character alone. Refer to the
following section for more information on the three phases of symbol substitution.

2.12.4 Three Phases of Symbol Substitution
The command interpreter performs symbol substitution in three phases:

Command Input Scanning
In this phase, the interpreter reads the command input and replaces arguments preceded with apostrophes
(double apostrophes when strings are enclosed in quotation marks). Symbols preceded by odd groups
of apostrophes are translated iteratively. Refer to theIterative Substitution Using Apostrophestopic for
more information. Symbols within quoted strings, preceded with double apostrophes, are not translated
iteratively.

Command Parsing
During this phase, the command interpreter analyzes the command string and determines whether the
first value on the command line is a symbol used as a command synonym (foreign command). If so,
the interpreter replaces the symbol with its current value. All substitutions requested with ampersands
are performed. In phase two, the Interpreter makes only a single pass through the command string.

Chapter Two - Command File Programming 71

Expression Evaluation
During this phase, the command interpreter replaces any remaining symbols used in command expressions.
For example, expressions used with the IF command. In phase three, the command interpreter makes
only a single pass through the command string.

2.12.4.1 Iterative Substitution Using Apostrophes

When an apostrophe is used to request symbol substitution, the command interpreter performs iterative, or
multiple pass, substitution during the first (input scanning) phase of symbol substitution. Iterative substitution
is performed from left to right. However, substitution using apostrophes is not iterative when substituting
symbols inside quoted strings.

Example: CMD>SYMBOL = “10"
CMD>A =”’SYMBOL’"
CMD>B = ‘A’
CMD>SHOW SYMBOL B
B= 10 Hex= 000A Octal= 000012

After the statement B = ‘A’ the resulting integer value of the symbol is 10.

This result is achieved in the following steps:

1) The symbol name A is enclosed in apostrophes, so it is replaced with its current value (‘SYMBOL’).

2) Because the value (‘SYMBOL’) is also enclosed in apostrophes, the command interpreter replaces the
value SYMBOL with its current value (10).

3) Since value (10) has no apostrophes, the command input scanning phase (phase one) is complete. No
further substitution is required during the command parsing or expression evaluation phases. Therefore,
10 is the final value given to the symbol name B. However, note what happens when you define B as:

Example: CMD>B = “’’A’”
CMD>SHOW SYMBOL B
B ="’SYMBOL’"

In this case, B has the value “’SYMBOL’”. The symbol name A is replaced only once,
because substitution is not iterative within quoted character strings.

2.12.4.2 Iterative Substitution Using Command Synonyms

The command interpreter performs iterative substitution automatically only when an apostrophe is in the
command string. In some cases, you may want to nest synonym definitions.

Example: CMD>COMMAND = “HELP”
CMD>HH = “’COMMAND’”
CMD>HH
CMD-W-INVALCMD, Unrecognized command - ‘COMMAND’

In this example, when the command synonym HH is processed, the command interpreter performs
substitution only once. The resulting string is ‘COMMAND’. The command interpreter issues an
error message because it cannot detect a command on the line.

72

The error occurs because, during the first phase of command processing, no substitution is performed (the string
HH is not delimited by apostrophes). During the second phase, the string ‘COMMAND’ is substituted for HH
because HH is the first value on the command line. No additional substitution is performed.

To correctly use the command synonym HH, it must be enclosed in apostrophes, as shown below:

CMD>‘HH’

In this context, the HH is evaluated during the first phase of command processing because it is delimited by
apostrophes. Since the use of apostrophes forces the substitution to be iterative, the resulting value (‘COM-
MAND’) is also evaluated and the string HELP is substituted in place of ‘HH’.

2.12.4.3 Iterative Substitution in Expressions

When the command interpreter analyzes an expression, any symbols in the expression are replaced only once;
iteration is not automatic. However, iterative substitution can be forced by using an apostrophe or an ampersand
in the expression. The rules are as follows:

o The command interpreter performs all substitution requested by apostrophes and ampersands before
the command string is executed.

o Commands that automatically perform symbol substitution do so after the command string has been
processed by the command interpreter.

The following example illustrates iterative substitution in an IF command.

Example: IF P’COUNT’ .EQS. “” THEN GOTO DONE

When the command interpreter scans the input line, it replaces the symbol name COUNT with its
current value. If the current value of COUNT is 1, the expression is evaluated as follows:

IF P1 .EQS. “” THEN GOTO DONE

Because this string does not have apostrophes, the command interpreter does not perform any
additional substitutions. However, when the IF command executes, it automatically evaluates the
symbol name P1 and replaces it with its current value.

2.12.4.4 Substitution of Undefined Symbols

If a symbol is not defined when it is used in a command string, the command interpreter either issues an error
message or replaces the symbol with a null string, depending on the context. The rules are as follows:

o During command input scanning and during command parsing, the command interpreter replaces all
undefined symbols that are preceded by apostrophes or ampersands with null strings.

o During expression evaluation, the command interpreter issues a warning message and does not complete
command processing.

Chapter Two - Command File Programming 73

2.13 ERROR FACILITY
On completion of a command, a status condition code is saved in the symbol $STATUS to indicate the reason
the command terminated. If error handling is enabled, specific error handling actions, based on that reason, are
performed. Error handling is enabled by the ON and SET commands. The default conditions are as follows:

o SET ON

o ON ERROR THEN EXIT

o SET ABORT

o ON ABORT THEN STOP

o SET NODEVICE_ERROR

o ON DEVICE_ERROR THEN STOP

o SET NODISCONNECT

o ON DISCONNECT THEN STOP

Note: The default conditions may be modified by a command file.

No action takes place if the error handler for the specific error condition is disabled with one of the following:

o SET NOON

o SET NOABORT

o SET NODEVICE_ERROR

o SET NODISCONNECT

Descriptive error and informational messages issued by the command interpreter break down into four parts:

(1) facility (2) l- (3) ident (4) text

The beginning of the message,facility , begins with the processor identification letters; EM for the Emulator
Processor, CMD for the Command Processor or KER for the Kermit Processor.

74

The l severity level follows:

Ident is the mnemonic code identifying the message, followed by thetext.

For example, specifying an invalid command would display an error message:

Example: CMD>DISPLY
CMD-W-INVALCMD, Unrecognized command - DISPLY

Once the message displays, the most significant bit (bit 15 of $STATUS) is set to 1, indicating
that the message has displayed. The error processor uses this to prevent the message from
redisplaying if the status code is passed to the EXIT command. Clearing this bit displays the
message again upon exit.

2.13.1 $STATUS Conditional Codes
Error message values are saved as a 16 bit word in the reserved global symbol $STATUS. The breakdown of
$STATUS is as follows:

Bits 0-2 Contains the severity level of the message.

Bits 3-14 Contains the message ID number.

Bit 15 Indicates if the error message has displayed.

To correctly identify an error message with bit 15 possibly set, it is necessary to logically AND the $STATUS
code with a mask of %X7FFF to ignore bit 15.

The low-order three bits of the $STATUS code are also saved in the reserved global symbol $SEVERITY.
These bits represent the severity of the condition that caused the command to terminate. The severity error levels
are represented by the following numeric values:

Level Definition
E ERROR
F FATAL
I INFO
S SUCCESS
W WARNING

Table 2-9 Error Message Severity Levels

Level Definition
0 WARNING
1 SUCCESS
2 ERROR
3 INFORMATIONAL
4 FATAL

Table 2-10 $STATUS Error Level Severity

Chapter Two - Command File Programming 75

Note: Some severe errors are handled as fatal system errors and cannot be controlled by the user.

The SUCCESS and INFORMATIONAL levels are odd numeric values (true), while the remaining error severity
levels are even numeric values (false). This makes it easy to test for successful completion of a command using
the IF command.

If the program completes with a SUCCESS numeric value, $STATUS and $SEVERITY is odd and the IF
expression is true.

Example 1: IF .NOT. $STATUS THEN GOTO ERROR

This IF statement tests the NOT SUCCESS condition of the last executed command.

Example 2: IF $STATUS THEN DISPLAY “Operation completed successfully”

This IF statement tests for the SUCCESS condition of the last executed command.

Example 3: IF ($STATUS .AND. %X7FFF) .EQ. 52 THEN GOTO EXIT_CLEANUP

This IF statement tests for a specific error message (an Abort).

When the binary status code is stored in $STATUS, the mnemonic value for the error condition is also stored
in $STATUSID. The value in $STATUSID can then be tested symbolically for specific errors.

Example 1: IF $STATUSID .EQS. “EOF” THEN EXIT

Tests for an EOF condition and then exits if found.

Example 2: IF $STATUSID .EQS. “SUCCESS” THEN GOTO 100

Transfers control to label 100 if the previous command was successful.

76

2.13.2 DOS ERROR LEVEL
To see a listing of the error codes with their DOS ErrorLevel included, execute the following command file:

CMD>SET MESSAGE SCREEN
CMD>@ERRMSG

2.13.3 Messages
STATUS CODES are made up of three important parts:

Note: The message text is not stored in a symbol, however, the message text may be extracted using the
F$MESSAGE lexical function:

MSG := F$MESSAGE($STATUS)

Title Description Found In
L Severity Level $SEVERITY
Ident ID Mnemonic $STATUSID
Message Error Message (see Note)

Table 2-11 Status Code Description

Chapter Two - Command File Programming 77

L Ident Message
S ABORT >ABORT INTERRUPT<
W ABORTED Command process aborted
W ABSYMD Abbreviated symbol definition conflict - rename symbol
E ALREADYCONN Already connected to node
W AMBIGCMD Ambiguous command -
W AMBIGOPT Ambiguous option - /
W AMBKEYW Ambiguous qualifier or keyword -
W ARGLENEXC Argument exceeded maximum length -
S CMDFONLY Command or function enabled for command files only
S CONNLOST Connection lost
E DDEBADCONN DDE Bad conversation handle
E DDEBADDATA DDE Bad data handle
E DDEBADDISC DDE DISCONNECT failed
E DDEINVDATAL Invalid data link requested
E DDEMAXADVISE Maximum number of advise items reached
E DDEMAXCONN Maximum number of connections reached
E DDENOCONN DDE CONNECT failed
E DDENODATA DDE Data not available from server

E DEFNODECONN Default (auto-connect) node already connected
E DEFNODEUNDEF Default (auto-connect) node is undefined
F DISKFULL Disk full error
F DIVBYZERO Divide by zero error
F DOSERR DOS error - unable to execute cmd
E EOF End of file detected
W EXPOVFL Command line expansion overflow
W EXPSYN Invalid expression syntax - check operators and operands
S FILECREATE Error creating PC file -
S FILEOPEN Error opening PC file -
S FILEPTR Error setting file pointer in PC file -
S FILEREAD Error reading PC file -
S FILEUPDATE Error updating PC file -
S FILEWRITE Error writing PC file -
E GRAPHICSNOTLOADED Graphics not loaded
E HELPREAD Error reading HELP file - data not properly formatted
E INSFMEM Insufficient DOS memory
W INVALARG Invalid argument -
W INVALBAUD Invalid Baud Rate for INT 14 Redirection
W INVALCMD Unrecognized command -
W INVALDECTOKSTR Invalid DEC TOKEN string

Table 2-12 Error Messages and Status Codes

78

Table 2-12 Error Messages and Status Codes (cont’d)

L Ident Message
W INVALOPT Invalid option - /

W INVALTOK Invalid TOKEN code -

S INVFSPEC Invalid PC file specification -

W INVKEYW Invalid keyword or qualifier -

W INVOPER Unrecognized operator in expression -

E INVSKEY Invalid Softkey

W IVDELTIM Invalid delta time argument -

W IVFNAM Invalid LEXICAL or SYMLEX name -

S IVSETUP Invalid SETUP file name -

W IVSYMLVAR Invalid SYMLEX variable

S KHOSTERR Error packet received from HOST

S KPROTO Protocol error

I KRENAME File exists - could not rename

S KRETRY Packet retry count exceeded

S KTIMOUT Timed out waiting for packet

E LASTNODECONN Last node already connected

E LASTNODEUNDEF Last node is undefined

E LINELONG Command line exceeds maximum length

W LOGFEXIST Log file already exists - use /OVERWRITE or /APPEND option

W LOGICDEF Logical name already defined -

W LOGINPROG Logging in progress - request ignored

W MISKEYW Missing keyword or qualifier

W MISOPTPAR Missing option parameter - check options for required arguments

S NETABORTED Connection aborted

S NETADDNAM Error adding name to network

I NETCONNBAPI BAPI node connected

I NETCONNCOM COM port connected

I NETCONNCTERM CTERM node connected

I NETCONNECT Connecting to Network

E NETCONNERR Error attempting connection

E NETDISCON Session disconnected

I NETINVCOM COM port number invalid

E NETINVPASS Invalid password

I NETINVPORT Port number invalid

Chapter Two - Command File Programming 79

Table 2-12 Error Messages and Status Codes (cont’d)

L Ident Message
I NETNOCOM COM port not specified
E NETNONFS NFS is not installed
I NETNOSESS Multi-sessions not enabled
I NETNOTCONN Session not connected
E NETNOWSK WINSOCK network is not installed
W NETONLY Only available on network versions
I NETSESSMAX No more sessions available
E NETUNKNOWN Requested node is unknown
E NETUNREACH Node is currently unreachable
E NODENAMEREQD Node name is required for connection
E NOLABEL GOTO label not found -
W NOMSG Message number not found - %X
W NOMSGID Message identifier not found -
E NORETURN No RETURN pointer found from prior GOSUB command
E NOTCONN Not connected to a port
E NOTEXTBLK DISPLAY text block not found
W NOTHEN IF or ON statement syntax error - check placement of THEN keyword
E PICFILEEXISTS Picture file already exists
E PICFILENOCREATE Cannot create picture file
E PICFILENOEXIST Picture file does not exist
F PROGERR Program check error - contact technical support for assistance
S PRTNOTRDY Printer not ready
W READTIMOUT Read time out error
S SETFOPEN Error opening Setup File -
S SETFREAD Error reading Setup File -
S SETFVER Setup File Version Error -
S SETFWRITE Error writing Setup File -
I SYMTRUNC Symbol truncated to -
W SYNTAX Command syntax error
w UNDEFSYM Undefined symbol -
w UNDFILE PC file not open, check logical filename -
I UNDLOGIC Undefined logical -
W VALOVFL Value overflow
W WILDCARD Improper use of wildcards for this command or expression
F WINERR WINDOWS error
E XFERERROR Unidentified File Transfer Error

80

Chapter Three - VT320 Programming 81

u
CHAPTER 9

VT320 PROGRAMMING

OVERVIEW
This chapter describes the character encoding concepts for the VT320. It covers control functions
(control characters, escape sequences, and device control strings). Control functions are used in a
program to specify how theemulator processes, sendsand displayscharacters. Each control function
has a unique name and each name has a unique, mnemonic abbreviation.

Chapter Three - VT320 Programming 85

3.1 QUICK REFERENCE TABLES
This section contains quick reference tables for each of the main areas of programming information, namely:
character sets, transmitted codes, received codes and reports. A separate section for each area contains more
detailed information.

3.1.1 Characte r Sets

Design atin g Character Sets
ESC Intermediate Final

Intermedi ate Final
94 Characte r Sets
To Select Use

96 Characte r Sets
To Select Use To Select Use

G0 (
G1)
G2 ∗
G3 +

G1 -
G2 .
G3 /

ASCII B
DEC Supplemental Graphic %5
ISO Latin-1 A
User-preferred supplemental <
DEC Special Graphic 0

Mapping Character Sets

Loc king Shifts
Code Function
SI Locking shift 0. Maps G0 into GL
SO Locking shift 1. Maps G1 into GL
ESC ~ Locking shift 1, right. Maps G1 into GR ∗
ESC n Locking shift 2. Maps G2 into GL ∗
ESC } Locking shift 2, right. Maps G2 into GR ∗
ESC o Locking shift 3. Maps G3 into GL ∗
ESC | Locking shift 3, right. Maps G3 into GR ∗

∗ Indicates VT300 mode only

Sing le Shifts

8-Bi t Code 7-Bi t Code Funct ion
SS2 ESC N Single Shift 2. Maps G2 into GL for the next character.
SS3 ESC O Single Shift 3. Maps G3 into GL for the next character.

Table 3-1 Character Set Quick Reference

86

3.1.2 Transmitte d Codes

Key Code

Editi ng Keypad
Find
Insert Here
Remove
Select
Prev Screen
Next Screen

CSI 1~
CSI 2~
CSI 3~
CSI 4~
CSI 5~
CSI 6~

Curso r Keys Reset Norm al
CSI A
CSI B
CSI C
CSI D

Set Appl ication
SS3 A
SS3 B
SS3 C
SS3 D

Auxi liary Keypad
0
1
2
3
4
5
6
7
8
9
,
.
PF1
PF2
PF3
PF4
Enter

Numeric
0
1
2
3
4
5
6
7
8
9
(minus)
(comma)
(period)
SS3 P
SS3 Q
SS3 R
SS3 S
CR or CRLF

Appl ication
SS3 p
SS3 q
SS3 r
SS3 s
SS3 t
SS3 u
SS3 v
SS3 w
SS3 x
SS3 y
SS3 m
SS3 l
SS3 n
SS3 P
SS3 Q
SS3 R
SS3 S
SS3 M

Table 3-2 Transmitted Codes Quick Reference

Chapter Three -VT320 Programming 87

Table 3-2 Transmitted Codes Quick Reference (cont’d)

Key Code

Top Row Funct ion Keys
Hold Screen (F1)
Print Screen (F2)
Set-Up (F3)
Data/Talk (F4)
Break (F5)
F6
F7
F8
F9
F10
F11
F12
F13
F14
Help (F15)
Do (F16)
F17
F18
F19
F20

*
*
*
*
*
CSI 17 ~
CSI 18 ~
CSI 19 ~
CSI 20 ~
CSI 21 ~
CSI 23 ~
CSI 24 ~
CSI 25 ~
CSI 26 ~
CSI 28 ~
CSI 29 ~
CSI 31 ~
CSI 32 ~
CSI 33 ~
CSI 34 ~

* Indicates that codes are not generated.

88

3.1.3 Receive d Codes

3.1.3.1 VT320 Control Sequences

Escape Sequence Func tion
Set Character Attribut es
CSI Ps;... m Character attributes

Ps = 0 all attributes off

Ps = 1 bold on

Ps = 4 underscore on

Ps = 5 blink on

Ps = 7 reverse video on

Ps = 2 2 normal intensity

Ps = 2 4 not underscored

Ps = 2 5 not blinking

Ps = 2 7 positive image
CSI “ q All Non-graphic off
CSI 0 “ q All Non-graphic off
CSI 1 “ q All Non-erasable on
CSI 2 “ q All Non-erasable off

Comp atib ility Level
CSI 61"p Level 1 (VT100)
CSI 62"p Level 3 (VT300 8-bit)
CSI 62;0"p Level 3 (VT300 8-bit)
CSI 62;1"p Level 3 (VT300 7-bit)
CSI 62;2"p Level 3 (VT300 8-bit)
CSI 63"p Level 3 (VT300 8-bit)
CSI 63;0"p Level 3 (VT300 8-bit)
CSI 63;1"p Level 3 (VT300 7-bit)
CSI 63;2"p Level 3 (VT300 8-bit)

Cursor Posi tion ing
CSI Pn A Cursor up
CSI Pn B Cursor down
CSI Pn C Cursor right
CSI Pn D Cursor left
CSI Pl;Pc H Direct cursor addressing
CSI Pl;Pc f Direct cursor addressing
CSI H Home

Table 3-3 VT320 Contro l Sequences

Chapter Three -VT320 Programming 89

Table 3-3 VT320 Control Sequences (cont’d)

Escap e Sequence Funct ion
Cursor Movemen t (cont’d)
CSI f Home
IND Index
ESC D Index
NEL New Line
ESC E New Line
RI Reverse Index
ESC M Reverse Index

Edit ing
CSI Pn P Delete Pn characters
CSI Pn @ Insert Pn characters
CSI Pn L Insert Pn lines
CSI Pn M Delete Pn lines

Erasing
CSI Pn X Erase next Pn characters from cursor
CSI K Cursor to end of line
CSI 0 K Cursor to end of line
CSI 1 K Beginning of line to cursor
CSI 2 K Entire line
CSI J Cursor to end of screen
CSI 0 J Cursor to end of screen
CSI 1 J Beginning screen to cursor
CSI 2 J Erase entire screen
CSI ? K Selective erase from cursor to end of line
CSI ? 0 K Selective erase from cursor to end of line
CSI ? 1 K Selective erase from beginning of line to cursor
CSI ? 2 K Selective erase entire line
CSI ? J Selective erase from cursor to end of screen
CSI ? 0 J Selective erase from cursor to end of screen
CSI ? 1 J Selective erase from top of screen
CSI ? 2 J Selective erase entire screen

Lin e Attributes
ESC #3 Double height - top half
ESC #4 Double height - bottom half
ESC #5 Single width - single height
ESC #6 Double width - single height

90

Table 3-3 VT320 Control Sequences (cont’d)

Escap e Sequence Function
Termin al Modes
Set Reset Mode Name
CSI 2h CSI 2l Keyboard Action mode
CSI 4h CSI 4l Insert/Replace mode
CSI 12h CSI 12l Send/Receive mode
CSI 20h CSI 20l Line feed/new line
CSI ?1h CSI ?1l Cursor key mode

CSI ?2l VT52 mode

Set Reset Mode Name
CSI ?3h CSI ?3l Column mode
CSI ?4h CSI ?4l Scrolling mode
CSI ?5h CSI ?5l Screen mode
CSI ?6h CSI ?6l Origin mode
CSI ?7h CSI ?7l Auto Wrap mode
CSI ?8h CSI ?8l Auto repeat
CSI ?18h CSI ?18l Form Feed mode
CSI ?19h CSI ?19l Screen Print mode
CSI ?25h CSI ?25l Text cursor mode
CSI ?42h CSI ?42l Character Set mode
CSI ?66h CSI ?66l Numeric keypad
CSI ?67h CSI ?67l Backarrow key
CSI Ps $}

Ps = 0
Ps = 1

Select status display
main display
status line

CSI Ps $~
Ps = 0
Ps = 1
Ps = 2

Select status line type
none
indicator
host-writable

ESC = ESC > Keypad mode

Prin ting
CSI i Print Screen
CSI 0i Print Screen
CSI 4i Print Controller mode off
CSI 5i Print Controller mode on
CSI ?1i Print Cursor Line
CSI ?4i Auto Print mode off
CSI ?5i Auto Print mode on

Chapter Three -VT320 Programming 91

Table3-3 VT320 Control Sequences (cont’d)

Escape Sequence Func tion
Prog rammabl e LEDs
CSI Ps;Ps q Programmable LEDs

Ps = 0 all LEDs off

Ps = 1 L1 on

Ps = 2 L2 on

Ps = 3 L3 on

Ps = 4 L4 on

Termin al Reset Mode
ESC c Hard terminal reset
CSI !p Soft terminal reset

Scroll ing Region
CSI Pt; Pb r Define scroll region

Select C1 Cont rol Transm ission
ESC space F 7-bit C1 control transmission
ESC space G 8-bit C1 control transmission

Tab Stops
HTS Set tab at current column
ESC H Set tab at current column
CSI g Clear at current column
CSI 0 g Clear at current column
CSI 3 g Clear all tabs

User Define d Keys (DECUDK)
DCS Pc;Pl | ky1/st1;ky2/st2;...kyn/stn ST

DCS Privat e Sequences
CSI 0;0| Enable Status Line
CSI 0;1| Disable Status Line
CSI 0;2| Erase Status Line
CSI 0;3;Pc|...String... ST Write Status Line
CSI 2;n| Set/Reset Local Echo
CSI 3;n| Set/Reset WP mode
CSI 4;pl| Set Printer Port
CSI 5|...Command String... ST Do Emulator Command
CSI 6| Request Product ID
CSI 7;pl| Set number of lines per screen

92

3.1.3.2 VT100 Escape Sequences

Escap e Sequen ce Func tion
Characte r Attributes
ESC [Ps;... m Character attributes

Ps = 0 All attributes off
Ps = 1 Bold on
Ps = 4 Underscore on
Ps = 5 Blink on
Ps = 7 Reverse video on

Characte r Sets
G0 G1
ESC (A ESC) A UK set
ESC (B ESC) B US ASCII set
ESC (0 ESC) 0 Special Graphics set
ESC (1 ESC) 1 Alternate ROM
ESC (2 ESC) 2 Alternate ROM Special Graphics set

Curso r Movement
ESC [Pn A Cursor up
ESC [Pn B Cursor down
ESC [Pn C Cursor right
ESC [Pn D Cursor left
ESC [Pl;Pc H Direct cursor addressing
ESC [Pl;Pc f Direct cursor addressing
ESC D Index
ESC E New line
ESC M Reverse index
ESC 7 Save cursor - attributes
ESC 8 Restore cursor - attributes

Erase
ESC [K Cursor to end of line
ESC [0 K Cursor to end of line
ESC [1 K Beginning of line to cursor
ESC [2 K Entire line
ESC [J Cursor to end of screen
ESC [0 J Cursor to end of screen
ESC [1 J Beginning screen to cursor
ESC [2 J Erase entire screen

Lin e Size
ESC #3 Double height - top half
ESC #4 Double height - bottom half

Table 3-4 VT100 Escape Sequences

Chapter Three -VT320 Programming 93

Table 3-4 VT100 EscapeSequences (cont’d)

Escape Sequence Func tion

Line Size (cont’d)
ESC #5 Single width - single height
ESC #6 Double width - single height

Modes
Set Reset Mode Name
ESC[20h ESC[20l Line feed/new line
ESC[?1h ESC[?1l Cursor key mode
ESC[?3h ESC[?3l Column mode
ESC[?4h ESC[?4l Scrolling mode
ESC[?5h ESC[?5l Screen mode
ESC[?6h ESC[?6l Origin mode
ESC[?7h ESC[?7l Wraparound
ESC[?8h ESC[?8l Auto repeat
ESC[?9h ESC[?9l Interlace
ESC 1 ESC 2 Graphic process option
ESC = ESC > Keypad mode

Prog rammabl e LEDs
ESC [Ps;Ps q Programmable LEDs

Ps = 0 All LEDs off

Ps = 1 L1 on

Ps = 2 L2 on

Ps = 3 L3 on

Ps = 4 L4 on

Reset
ESC c Reset

Scroll ing Region
ESC [Pt; Pb r Define scroll region

Tab Stops
ESC H Set tab at current column
ESC [g Clear at current column
ESC [0 g Clear at current column
ESC [3 g Clear all tabs

94

3.1.3.3 VT52 Escape Sequences

Escap e Sequence Function
ESC A Cursor up
ESC B Cursor down
ESC C Cursor right
ESC D Cursor left
ESC F Enter graphics mode
ESC G Exit graphics mode
ESC H Cursor to home position
ESC I Reverse line feed
ESC J Erase to end of screen
ESC K Erase to end of line
ESC Y Direct cursor address
ESC Z Identify
ESC = Enter alternate keypad mode
ESC > Exit alternate keypad mode
ESC < Enter ANSI mode
ESC ^ Enter auto print mode
ESC _ Exit auto print mode
ESC W Enter printer controller mode
ESC X Exit printer controller mode
ESC] Print screen
ESC V Print cursor line

Table 3-5 VT52 Escape Sequences

Chapter Three -VT320 Programming 95

3.1.4 Reports

3.1.4.1 VT320 Reports

Host Directives*
(host to Emul ator)

Reports
(Emul ator to host) Func tion

CSI c or CSI 0 c CSI ? Psc ; Ps1 ; ...Psn c
Psc Operating level
1 level 1 (VT100)
6 level 1 (VT102)
62 level 2 (VT200)
63 level 3 (VT300)

Ps1...Psn Extensions
1 132 columns
2 printer port
6 selective erase
7 soft character set
8 user-defined keys
9 NRC set

Prim ary Devic e Attributes

CSI > c or CSI > 0 c CSI > Pp ; Pv ; Po c
Pp Identification code
24 VT320

Pv Firmware version
Po Hardware options
0 no options

Secondar y Devic e Attribut es

CSI 6 n CSI Pl ; Pc R
Pl Line number
Pc Column number

Devic e Statu s Reports

Cursor Position

CSI ? 26 n CSI ? 27 ; Pd n
Pd Keyboard dialect
1 North American

Keyboard Dialect

CSI 5 n CSI 0 n no malfunction Operating Status
CSI 3 n malfunction

CSI ? 15 n CSI ? 13 n no printer Printer Status
CSI ? 10 n printer ready
CSI ? 11 n printer not ready

∗ All host directives are requests, unless otherwise specified.

Table 3-6 VT320 Reports

96

Table 3-6 VT320 Reports (cont’d)

Host Directives ∗
(host to Emul ator)

Emul ator Reports
(Emul ator to host) Funct ion

CSI ? 25 n CSI ? 20 n
UDKs unlocked

UDK Status
(VT300 mode only)

CSI ? 21 n
UDKs locked

CSI Ps $ u
Ps Report requested
0 ignored
1 terminal state report

DCS 1 $ s D...D
<checksum s 1 and 2> ST

D...D Report data

Termina l State Reports
(VT300 mode only)

DCS Ps $ p D...D ST
Ps Data string format
0 error
1 terminal state report

D...D Restored data

Restore terminal state

CSI Ps $ w
Ps Report requested
0 error
1 cursor information report
2 tab stop report

DCS 1 $ u D...D ST
D...D Data string

DCS 2 $ u D...D ST
D...D Tab stops

Presentatio n State Reports
(VT300 mode only)
Cursor information report

Tab stop report

DCS Ps $ t D...D ST
Ps Data string format
0 error
1 cursor information report
2 tab stop report

D...D Data string

Restore presentation state

CSI Pa $ p
Pa ANSI mode

CSI Pa ; Ps $ y
Pa ANSI mode
Ps Mode state
0 unknown state
1 set
2 reset
3 permanently set
4 permanently reset

Mode Settings
(VT300 mode only)

Chapter Three -VT320 Programming 97

Table 3-6 VT320 Reports (cont’d)

Host Directives ∗
(host to Emul ator)

Emula tor Reports
(Emul ator to host) Function

CSI ? Pd $ p
Pd DEC private mode

CSI ? Pd ; Ps $ y
Pd DEC private mode
Ps Mode state
0 unknown state
1 set
2 reset
3 permanently set
4 permanently reset

CSI Pa ; ...Pa h
Pa ANSI mode

Set mode

CSI ?Pd ; ...Pd h
Pd DEC private mode

CSI Pa ; ...Pa l
Pa ANSI mode Reset mode

CSI ? Pd ;... Pd l
Pd DEC private mode

ESC 7
Cursor Settings
Save cursor

ESC 8 Restore cursor

DCS $ q D...D ST
D...D Intermediate and/or

final characters of
function.

DCS Ps $ r D...D ST
Ps Request validity
0 invalid request
1 valid request

D...D Intermediate and/or
final characters of function.

Cont rol Funct ion
Settings
(VT300 mode only)

CSI & u DCS 0 ! u % 5 ST
DEC Supplemental Graphic

User-preferred
Suppl emental Set

DCS 1 ! u A ST
ISO Latin-1 Supplemental

(VT300 mode only)

* All host directives are requests, unless otherwise specified.

98

3.1.4.2 VT100 Reports

Pa Mode
2 Keyboard action

3 Control representation *

4 Insert/replace

10 Horizontal editing

12 Send/receive

20 Line feed/new line

* Control representation is not supported.

Table 3-7 ANSI Modes

Pd Mode Pd Mode
1 Cursor keys 18 Print form feed
2 ANSI 19 Printer extent
3 Column 25 Text cursor enable

4 Scrolling 42 National Replacement Character set
5 Screen 66 Numeric keypad
6 Origin 67 Backarrow key
7 Autowrap 68 Keyboard usage *
8 Autorepeat

* Keyboard usage is not supported and is permanently reset.

Table 3-8 DEC Privat e Modes

Host Directives
(hos t to Emul ator)

Emul ator Reports
(Emul ator to host) Function

ESC [6 n ESC [Pl;Pc R Cursor Position
ESC [c or ESC [0 c ESC [?1; Ps c Status Report
ESC Z ESC [?1; Ps c

Ps Identification Code
0 Base VT100
1 STP
2 AVO
3 AVO and STP
4 GPO
5 GPO and STP
6 GPO and AVO
7 GPO, STP, and AVO

Terminal Identification

Table 3-9 VT100 Reports

Chapter Three -VT320 Programming 99

3.2 CHARACTER ENCODING
The VT320 usesan 8-bit character encoding schemeand a7-bit code extension technique that are compatible
with ANSI (American National Standards Institute) standards.

When operating in VT100 or VT52 mode, you are limited to working in a 7-bit environment. There are three
requirements for operating in an 8-bit environment:

o Communicationsmust be set for 8-bits and no parity.

o Your program must be8-bit compatible.

o The emulator must be in VT320, 7-bit or 8-bit mode.

VT320 7-bit modedisplays theVT320 8-bit character set while sending 7-bit control sequencesto thehost.

VT320 8-bit modealso displays the8-bit character set, but sends8-bit control sequences to thehost.

Note: VT320 8-bit modeisnot acommunication setting. It isan operating environment. To select 8-bit communi-
cations, configure the emulator to No Parity.

100

3.2.1 7-Bi t ASCII Codes
The 7 Bit ASCII Code table shows the octal, decimal, and hexadecimal code for each 7-bit ASCII character.

Table 3-10 7-Bit ASCII Codes

Chapter Three -VT320 Programming 101

3.2.2 8-Bi t ASCII Codes
The8-Bit ASCII Codestableable 3-11 showsthe8-bit codetable, which hastwiceasmany codevaluesasthe
7-bit code table.

Al l codeson theleft half of the8-bit table(columns0 through 7) are7-bit compatible; the8th bit isnot set, and
can be ignored or assumed to be0. You can usethesecodesin a7-bit or an 8-bit environment. Al l codeson the
right half of the table (columns 8 through 15) have their 8th bit set. You can only use these codes in an 8-bit
environment.

The8-bit codetablehastwo setsof control characters, C0 (control 0) and C1 (control 1). Thetablealso hastwo
setsof graphicscharacters, GL (graphic left) and GR (graphic right).

The basic functions of the C0 and C1 codes are defined by ANSI. The C0 codes are 7-bit compatible. The C1
codes represent 8-bit control characters that perform functions beyond those possible with the C0 codes. You
can only useC1 codes in an 8-bit environment.

102

Table 3-11 8-Bit ASCII Codes

Chapter Three -VT320 Programming 103

3.2.3 Contro l Functions
Control functions are a set of instructions used to program the terminal emulator. All control functions can be
expressed in single-byteor multi-byte codes.

Single-byte codes are the C0 and C1 control characters. You can perform a limited number of functions using
C0 characters. A few more functions are available using C1 characters, but they must be used in an 8-bit
environment.

Multi-byte control codes represent far more functions than single-byte codes, due to the variety of code
combinationspossible. Thesecodesarecalled control sequences, escapesequences, and devicecontrol strings.

3.2.3.1 Control Sequences

A control sequencestartswith aCSI (Control SequenceIntroducer), followed by oneor moreASCII characters.
The8-bit CSI can also beexpressed asthe7-bit equivalentESC [(for use in a7-bit environment). Thus, you can
expressall control sequencesasescapesequenceswherethesecondcharacter isthe[.For example, thefollowing
two sequencesareequivalent and perform thesamefunction (they changethedisplay from 80 columns to 132
columns).

CSI ? 3 h
ESC [? 3 h

Since the 8-bit CSI uses one less byte than the 7-bit equivalent,ESC [, you wil l gain processing speed by using
theCSI. However, you can only useasequencestarting with theCSI character in an 8-bit environment.

You can express any C1 control character as a two character escape sequence whose second character has a
code that is40 (hexadecimal) lessthan that of the C1 character. For example,ST is the sameasESC \.

3.2.3.2 Escape Sequences

Al l escapesequencesstart with thesameC0 character,ESC, and arefollowed by oneor moreASCII characters.
For example, the following escapesequencecauses the current line to have double-width characters:

ESC # 6

Becauseescapesequencesuseonly 7-bit characters, you can use them in 7-bit or 8-bit environments.

You can make any escape sequence whose second character is in the range of column-4, row-0 through
column-5, row-15 (refer to the 7-Bit ASCII Codes topic for more information) one byte shorter by removing
theESC and adding 40 (hexadecimal) to thecodeof thesecond character. ThisgeneratesaC1 control character.

104

3.2.3.3 Device Control Strings

A devicecontrol string(DCS) isadelimitedstringof charactersused inadatastreamasalogical entity for control
purposes. It consists of an opening delimiter (a device control string introducer), a command string (data) and
aclosing delimiter (astring terminator).

Device control stringsareused to download character setsand to load user-defined keys.

A devicecontrol character (DCS) isan 8-bit control character. It isexpressed asESC P when coding for a7-bit
environment.

A string terminator (ST) is also an 8-bit control character. It is expressed asESC \ when coding for a 7-bit
environment.

3.3 CHARACTER SETS
Although theC0 and C1 function codescannot bechanged, theGL and GR codescan havedifferent character
setsmapped into them. TheMapping Character Sets topic describesthecommands for mapping character sets
into GL or GR.

The emulator supports the following character sets:

o DEC Multinational (consistsof ASCII and DEC Supplemental Character sets)

o ISO Latin-1

o DEC Special Graphics

o National Replacement Character

o Downloadable

Devic e Contro l Stri ng Data Str ing Termin ator

DCS UDKs or Character Set ST

Table 3-12 Device Contro l String

Chapter Three -VT320 Programming 105

3.3.1 DEC Multinational
The DEC multinational character set is thedefault character set.

The C0 and GL codes are the ASCII control codes and character set. The C1 and GR codes are the DEC
multinational 8-bit control characters and character set. The C1 and GR control codes and characters are not
available in VT52 and VT100 modes.

Table 3-13 DEC Multin ational Character Set

106

Table 3-13 DEC Multinationa l Character Set (cont’d)

Chapter Three -VT320 Programming 107

3.3.2 ISO Latin-1
The ISO Latin-1 set has 96 graphic characters. The majority of these are identical to the DEC Supplemental
Graphicset, but with afew additional symbolsand letters. TheISOLatin-1set canonly beused inVT300 mode.

Table 3-14 ISO Latin-1 Supplemental Character Set

108

3.3.3 DEC Special Graphics
Thischaracter set isalso called theVT100 LineDrawing character set. It iscomprised of ASCII charactersand
special symbols.

TheDEC Special Graphicsset can replaceeither theGL or GR characters. Refer to theMapping Character Sets
topic for more information.

This mapping iscompatible with VT100 and VT300 modes.

Table 3-15 DEC Special Graphic Character Set

Chapter Three -VT320 Programming 109

3.3.4 Nationa l Replacemen t Character
Al l National Replacement Character setsaresupported.Select thecharacter set withaset modecontrol sequence.

NRC setsareavailable for the following languages.

Each 7-bit character set contains94 graphic characters. ThetwelveNCR setsresembletheASCII character set.
However, some ASCII characters are replaced for a particular European language or dialect. The replaced
charactersareshown in the table below.

Note: NCR setsare for 7-bit compatibility. Eight-bit Multinational mode is the recommended operating mode.

3.3.5 Characte r Set Selection
To select acharacter set, it must first bedesignated asaG0, G1, G2 or G3 logical set, asin thefollowing sequence:

ESC <Intermedi ate> <Final>

Theintermediatecharacter isselected based on wheretheset is to bedesignated (G0, G1, etc.) and whether the
set has94 or 96 characters. 96 character setscannot be designated asG0.

Sequence Func tion
CSI ? 42h Set National
CSI ? 42l Reset National (Set Multinational)

Table 9-16 NRC Contro l Sequences

Characte r Set 35 64 91 92 93 94 95 96 123 124 125 126

Table 9-17 National Replacement Character Sets

Language NRC Set Langu age NRC Set
United Kingdom
Danish
Dutch
Finnish
Flemish
French/Belgium
French/Canadian
German

United Kingdom
Norwegian/Danish
Dutch
Finnish
French
French
French Canadian
German

Italian
Norwegian
Portuguese
Spanish
Swedish
Swiss (French)
Swiss (German)

Italian
Norwegian/Danish
Portuguese
Spanish
Swedish
Swiss
Swiss

110

The final character is thedesignator for thecharacter set.

Example: ESC +%5

Designates theDEC Supplemental Graphic set as theG3 logical set.

To Select Use

94 Character Set
G0
G1
G2
G3

(
)
∗
+

Table 3-18 Character Set Designation - Intermediate

To Select Use
ASCII (94) B

DEC Supplemental Graphic (94) %5

ISO Latin-1 Supplemental (96) A

User-preferred Supplemental (94) <

DEC Special Graphic (94) 0

National Replacement Character Sets (94)

Table 3-19 Character Set Designation - Final

Chapter Three -VT320 Programming 111

3.3.6 Mappin g Characte r Sets
Character setsaremapped into usewith locking shift and singleshift functions. Locking shift functionsmap a
character set into GL or GR where it remains until another locking shift isused.

Single shift functions map the G2 or G3 set into GL for the next character only. After the next character is
displayed, the previouscharacter set is restored into GL.

Sequence Function
SI Locking shift 0. Maps G0 into GL
SO Locking shift 1. Maps G1 into GL
ESC ~ Locking shift 1, right. Maps G1 into GR ∗
ESC n Locking shift 2. Maps G2 into GL ∗
ESC } Locking shift 2, right. Maps G2 into GR ∗
ESC o Locking shift 3. Maps G3 into GL ∗
ESC | Locking shift 3, right. Maps G3 into GR ∗

* Indicates VT300 mode only.

Table 3-20 Mapping Character Sets with Locking Shifts

8-Bi t Character 7-Bi t Equi valent Sequence Function
SS2 ESC N Single shift 2. Maps G2 into GL for the next character.
SS3 ESC O Single shift 3. Maps G3 into GL for the next character.

Table 3-21 Mapping Character Sets with Single Shifts

112

Figure 3-1 Locking Commands (VT100)

Figure 3-2 Locking and Single Shif t Commands

Chapter Three -VT320 Programming 113

3.4 TRANSMITTED CODES
This section describes thecodes that the emulator sends to aprogram. Key codesgenerated in VT52 modeare
listed if they differ from those in ANSI compatiblemode(VT200 and VT100).

3.4.1 Main Keypad
Themain keypad consistsof standard keys (used to generate letters, numbers, and symbols) and function keys
(used to generatespecial function codes).

3.4.1.1 Standard Keys

The standard keys generate only alphanumeric, ASCII characters. There areno DEC Supplemental characters
among the standard keys. However, you can create any DEC Multinational graphics character that is not
available through astandard key by typing avalid compose sequence.

Each character is represented by auniquecodethat isbased on thecharacter’sposition in thecodetable. Refer
to the 7-Bit ASCII Codes table for more information.

3.4.2 Editin g Keypad
The codes in the following table aregenerated by the VT320 editing keypad and cursor keys.

Key VT320 Mode
Find CSI 1 ~
Insert Here CSI 2 ~

Remove CSI 3 ~

Select CSI 4 ~

Prev Screen CSI 5 ~

Next Screen CSI 6 ~

Table 3-22 Codes from Editin g Keys

Cursor Key Mode VT52 Mode
Key Reset Norm al Set Appl ication Norm al and Appl ication

CSI A SS3 A ESC A
CSI B SS3 B ESC B
CSI C SS3 C ESC C
CSI D SS3 D ESC D

Table 3-23 Codes from Cursor Contro l Mode

114

3.4.3 Auxiliary Keypad
Thecharacterssent by theauxiliary keypad keysdepend upon thesettingsof two features; theoperating mode
(ANSI or VT52) and thekeypad mode(application or numeric).

Note: ESC [is the 7-bit equivalent forCSI .
ESC O is the 7-bit equivalent forSS3 .

VT320/VT100 ANSI Mode VT52 Mode

Key Numeric Appl ication Numeric Appl ication

0 0 SS3 p 0 ESC ? p

1 1 SS3 q 1 ESC ? q

2 2 SS3 r 2 ESC ? r

3 3 SS3 s 3 ESC ? s

4 4 SS3 t 4 ESC ? t

5 5 SS3 u 5 ESC ? u

6 6 SS3 v 6 ESC ? v

7 7 SS3 w 7 ESC ? w

8 8 SS3 x 8 ESC ? x

9 9 SS3 y 9 ESC ? z

- (minus) SS3 m - ESC ? m

, (comma) SS3 l , ESC ? l

. (period) SS3 n . ESC ? n

PF1 SS3 P SS3 P ESC P ESC P

PF2 SS3 Q SS3 Q ESC Q ESC Q

PF3 SS3 R SS3 R ESC R ESC R

PF4 SS3 S SS3 S ESC S ESC S

Enter CR or CRLF SS3 M CR or CRLF ESC ? M

Table 3-24 Codes from Auxilary Keypad Keys

Chapter Three -VT320 Programming 115

3.4.4 Top Row Functio n Keys
On the VT320 keyboard there are 20 top row function keys, F1 through F20. The keys F1 - F5, labeled Hold
Screen, Print Screen, Set-Up, Data/Talk, and Break, do not send codes. F6 - F20 send thecodesdefined below.

Func tion Key Generi c Name VT320 Mode VT100/VT52 Mode

Hold Screen F1 * ∗

Print Screen F2 * ∗

Set-Up F3 ∗ ∗

Data/Talk F4 ∗ ∗

Break F5 ∗ ∗

F6 F6 CSI 1 7 ~ ∗

F7 F7 CSI 1 8 ~ ∗

F8 F8 CSI 1 9 ~ ∗

F9 F9 CSI 2 0 ~ ∗

F10 F10 CSI 2 1 ~ ∗

F11 F11 CSI 2 3 ~ ∗

F12 F12 CSI 2 4 ~ ∗

F13 F13 CSI 2 5 ~ ∗

F14 F14 CSI 2 6 ~ ∗

Help (F15) CSI 2 8 ~ ∗

Do (F16) CSI 2 9 ~ ∗

F17 F17 CSI 3 1 ~ ∗

F18 F18 CSI 3 2 ~ ∗

F19 F19 CSI 3 3 ~ ∗

F20 F20 CSI 3 4 ~ ∗

∗ Indicates that codes are not generated.

Table 3-25 Codes from Top Row Functions

116

3.5.3 Control Characters
Tables 3-31and 3-32 define the action taken by the emulator when it receives C0 and C1 control characters. The
VT320 does not recognize all C0 and C1 characters; those not shown in either table are ignored.

C0 Name Action

NUL Null Ignored when received.

ENQ Enquiry Generates answerback message.

BEL Bell Generates bell tone.

BS Backspace Moves cursor to the left one position.

HT Horizontal Tabulation Moves cursor to next tab stop. Does not cause auto wrap.

LF Line Feed Causes a line feed.

VT Vertical Tabulation Processed as LF.

FF Form Feed Causes a form feed.

CR Carriage Return Moves cursor to left margin on current line.

SO (LS1) Shift Out
(Lock Shift G1)

Invokes G1 character set into GL. G1 is designated by a select character
set (SCS) sequence.

SI (LS0) Shift In
(Lock Shift G0)

Invokes G0 character set into GL. G0 is designated by a select character
set (SCS) sequence.

DC1 Device Control 1 Also referred to as Xon. If Xoff support is enabled, DC1 clears DC3 (Xoff);
this causes the emulator to continue sending characters.

DC3 Device Control 3 Also referred to as Xoff. If Xoff support is enabled, DC3 causes the emulator
to stop sending characters until a DC1 control character is received.

CAN Cancel If received during an escape or control sequence, terminates and cancels
the sequence. No error character is displayed. If received during a DCS,
the DCS is terminated and no error character is displayed.

SUB Substitute If received during an escape or control sequence, terminates and cancels
the sequence. Also displays a reverse question mark. If received during
a DCS, terminates the DCS and displays a reverse question mark.

ESC Escape Processed as an escape sequence introducer. Terminates any escape
control or DCS in progress.

DEL Delete Ignored when received. Cannot be used as a time fill character.

Table 3-31 C0 Control Characters

117

The equivalent 7-bit code extensions for each 8-bit C1 code are shown in the table below. The code extensions
require one more byte than the C1 codes.

3.5.4 Cursor Positioning
The cursor indicates the active screen position where the next character appears. Cursor positioning can be
controlled with the following sequences:

C1 Name Equivalent 7-Bit Action
IND Index ESC D Moves cursor down one line in same column.
NEL Next Line ESC E Moves cursor to first position on next line.
HTS Horizontal Tab Set ESC H Sets one horizontal tab stop at column where the cursor is.
RI Reverse Index ESC M Moves cursor up one line in same column.
SS2 Single Shift G2 ESC N Temporarily invokes G2 character set into GL for the next

character. G2 is designated by an SCS sequence.
SS3 Single Shift G3 ESC O Temporarily invokes G3 character set into GL for the next

character. G3 is designated by an SCS sequence.
DCS Device Control String ESC P Processed as opening delimiter of a DCS for device control use.
CSI Control Sequence

Introducer

ESC [Processed as a control sequence introducer.

ST String Terminator ESC \ Processed as a closing delimiter of a string opened by a DCS.

Table 3-32 C1 Control Characters

Name Sequence Action
Cursor Up (CUU) CSI Pn A Moves cursor up Pn lines in the same column.
Cursor Down (CUD) CSI Pn B Moves cursor down Pn lines in the same column.
Cursor Forward (CUF) CSI Pn C Moves cursor right Pn columns.
Cursor Backward (CUB) CSI Pn D Moves cursor left Pn columns.
Cursor Position (CUP) CSI Pl;Pc H Moves cursor to line Pl, column Pc.
Horizontal & Vertical Position (HVP) CSI Pl;Pc f Moves cursor to line Pl, column Pc.
Index (IND) ESC D Moves cursor down one line in the same column.
Reverse Index (RI) ESC M Moves cursor up one line in the same column.
Next Line (NEL) ESC E Moves cursor to the first position of the next line.
Save Cursor (DECSC) ESC 7 The following is saved in terminal memory:

– Cursor Position
– Graphic Rendition
– Character Set Shift State
– State of Wrap Flag
– State of Origin Mode
– State of Selective Erase

Restore Cursor (DECRC) ESC 8 Restores the states described for DECSC above.

Table 3-33 Cursor Positioning

9
V

T
320

P
ro

g
ram

m
in

g

Chapter Three - VT320 Programming 118

3.5.5 Editing
Editing sequences are used to insert or delete characters and lines at the cursor position.

3.5.6 Erasing
The erasing sequences are used to erase characters, lines, etc. from the cursor position.

Name Sequence Action

Insert Line (IL) CSI Pn L Inserts Pn lines at the cursor position.

Delete Line (DL) CSI Pn M Deletes Pn lines at the cursor position.

Insert Character (ICH) CSI Pn @ Inserts Pn blank characters at the cursor position (VT320 mode only).

Delete Character (DCH) CSI Pn P Deletes Pn characters starting at the cursor position.

Table 3-34 Editing

Name Sequence Action

Erase Character
(ECH)

CSI Pn X Erase character at the cursor position and the next Pn-1 characters
(VT320 mode only).

Erase In Line
(EL)

CSI K
CSI 0 K
CSI 1 K
CSI 2 K

Erase from cursor to end of line, inclusive.
Same as above.
Erase from beginning of line to cursor, inclusive.
Erase the entire line.

Erase In Display
(ED)

CSI J
CSI 0 J
CSI 1 J
CSI 2 J

Erase from cursor to end of screen, inclusive.
Same as above.
Erase from beginning of screen to cursor, inclusive.
Erase entire display.

Selective Erase In Line
(DECSEL)

CSI ? K
CSI ? 0 K
CSI ? 1 K
CSI ? 2 K

Erase all erasable characters from cursor to end of line.
Same as above.
Erase all characters from beginning of line to cursor, inclusive.
Erase all erasable characters on the line.

Selective Erase In Display
(DECSED)

CSI ? J
CSI ? 0 J
CSI ? 1 J

CSI ? 2 J

Erase all erasable characters from cursor to end of screen.
Same as above.
Erase all erasable characters from beginning of screen to cursor,
inclusive.
Erase all characters in the display.

Table 3-35 Erasing

119

3.5.7 Line Attributes
Line attributes are display features that affect a complete display line. Select line attributes by using the following
sequences:

3.5.8 Printing
All print operations can be selected using control sequences. But, before you select a print operation, you should
check the printer status using the Print Status Report.

3.5.9 Scrolling Region
This sequence is affected by Origin Mode.

Sequence Action
ESC # 3 Double height line, top half
ESC # 4 Double height line, bottom half
ESC # 5 Single width line
ESC # 6 Double width line

Table 3-36 Line Attribute Sequences

Operation Sequence Action
Auto Print Mode CSI ? 5 i

CSI ? 4 i

Turns on Auto Print mode. The printed line ends with CR and the
character that moved the cursor off the previous line (LF, F

F, or V
T).

Auto Wrap lines end with a line feed.
Turns off Auto Print mode.

Printer Controller Mode CSI 5 i

CSI 4 i

Turns on Printer Controller mode. The terminal sends received
characters to the printer without displaying them on the screen.
Turns off Printer Controller mode.

Print Cursor Line CSI ? 1 i Prints the display line containing the cursor. The Print Cursor Line
sequence is complete when the line prints.

Print Screen CSI i

CSI 0 i

Prints the screen display. The Print Screen sequence is complete
when the screen prints.
Same as above.

Table 3-37 Printer Operations

Name Sequence Action

Set Top &
Bottom Margins

CSI Pt;Pb r Pt is the top margin and Pb is the bottom margin. The scrolling
region must be at least two lines and Pb must be larger than
Pt. The cursor is placed in the home position.

9
V

T
320

P
ro

g
ram

m
in

g

Chapter Three - VT320 Programming 120

3.5.10 Select C1 Controls
Select C1 Controls can be used to represent C1 control codes in 7-bit or 8-bit form. However, it is recommended
that you use DECSCL sequences instead of Select C1 Controls. The advantage is DECSCL performs a soft
reset, putting the emulator in a known state, in addition to setting the Terminal mode and the C1 control state.

3.5.10.1 Select 7-bit C1 Transmission (S7C1T)

Note: The S7C1T sequence is ignored in VT100 and VT52 modes.

3.5.10.2 Select 8-bit C1 Transmission (S8C1T)

3.5.11 Tab Stops

3.5.12 Terminal Modes
A mode is a terminal operating state; each mode changes the way the emulator works.

Each mode has an identifying mnemonic name. You can set or reset modes individually or in strings, using set
mode (SM) or reset mode (RM) control sequences.

Name Sequence Action

S7C1T ESC space F Converts all C1 codes returned to the host to
their equivalent 7-bit code extensions.

Name Sequence Action

S8C1T ESC space G Returns C1 codes to the application without
converting them to their 7-bit code extensions.

Name Sequence Action

Set Tab ESC H Sets a tab stop at the current column.

Clear Tab CSI g
CSI 0 g
CSI 3 g

Clears a tab stop at the current column.
Same as above.
Clears all tab stops.

Table 3-38 Tab Stops

121

3.5.12.1 Reset Mode (RM)

Resets the ANSI and Digital private modes, individually or in strings.

3.5.12.2 Set Mode (SM)

Sets the ANSI and DEC private modes, individually or in strings.

Mode Sequence Action
ANSI CSI Ps ;...; Ps l Reset sequence for ANSI modes.
DEC Private CSI ? ;...; Ps l Reset sequence for DEC private modes.

Mode Sequence Action
ANSI CSI Ps ;...; Ps h Set sequence for ANSI mode.
DEC Private CSI ? ;...; Ps h Set sequence for DEC Private mode.

Name Code Set Mode Reset Mode
ANSI/VT52 DECANM N/A VT52

CSI ? 2 l
Auto Repeat DECARM On

CSI ? 8 h
Off
CSI ? 8 l

Auto Wrap DECAWM On
CSI ? 7 h

Off
CSI ? 7 l

Backarrow Key DECBKM BS
CSI ? 67 h

DEL
CSI ? 67 l

Character Set DECNRCM National
CSI ? 42 h

Multinational
CSI ? 42 l

Column DECCOLM 132 Column
CSI ? 3 h

80 Column
CSI ? 3 l

Cursor Key DECCKM Application
CSI ? 1 h

Cursor
CSI ? 1 l

Insert/Replace IRM Insert
CSI 4 h

Replace
CSI 4 l

Keyboard Action KAM Locked
CSI 2 h

Unlocked
CSI 2 l

Keypad DECKPAM/
DECKPNM

Application
ESC =

e p e a t

Line Feed/New Line LNM New Line
CSI 20 h

Line Feed
CSI 20 l

Numeric Keypad DECNKM Application
CSI ? 66 h

Numeric
CSI ? 66 l

Table 3-39 Selectable Modes Summary

9
V

T
320

P
ro

g
ram

m
in

g

Chapter Three - VT320 Programming 122

3.5.12.3 ANSI/VT52 Mode (DECANM)

In ANSI mode, reset selects VT52 compatibility mode. In VT52 mode, the emulator responds to Digital private
sequences like a VT52 terminal.

Note: There is no Set mode for ANSI/VT52 mode.

3.5.12.4 Auto Repeat Mode (DECARM)

Specifies whether or not keys automatically repeat their character when held down.

Table 3-39 Selectable Modes Summary (cont’d)

Name Code Set Mode Reset Mode
Origin DECOM Origin

CSI ? 6 h
Absolute
CSI ? 6 l

Print Extent DECPEX Full Screen
CSI ? 19 h

Scroll Rgn
CSI ? 19 l

Print Form Feed DECPFF On
CSI ? 18 h

Off
CSI ? 18 l

Screen DECSCNM Reverse
CSI ? 5 h

Normal
CSI ? 5 l

Scrolling DECSCLM Smooth
CSI ? 4 h

Jump
CSI ? 4 l

Select Status Display DECSASD CSI Ps$}
Ps=0 main display
Ps=1 status line

Select Status Line Type DECSSDT CSI Ps $~
Ps=0 none
Ps=1 indicator
Ps=2 host-writable

Send/Receive SRM Off
CSI 12 h

On
CSI 12 l

Mode Sequence Action

Reset CSI ? 2 l Sets the emulator to VT52 mode.

Mode Sequence Action

Set CSI ? 8 h Keys autorepeat when pressed for more than 0.5 seconds

Reset CSI ? 8 l
Keys do not auto

123

3.5.12.5 Auto Wrap Mode (DECAWM)

Selects where received characters appear when the cursor is at the right margin.

3.5.12.6 Backarrow Key Mode (DECBKM)

Selects whether the emulator sends a delete or backspace for the backarrow key.

3.5.12.7 Character Set Mode (DECNRCM)

Determines whether the emulator uses NRCs or the DEC multinational character set.

3.5.12.8 Column Mode (DECCOLM)

Column mode selects the number of columns per line; 80 or 132.

Mode Sequence Action
Set CSI ? 7 h Selects auto wrap. Characters received when the cursor is at

the right margin appear on the next line at the left margin.
Reset CSI ? 7 l Turns off auto wrap. Characters received when the cursor is

at the right margin are overwritten.

Mode Sequence Action
Set CSI ? 67 h Move cursor one position to the left (backspace).
Reset CSI ? 67 l Delete previous character.

Mode Sequence Action
Set CSI ? 4 2 h Select National mode. Generates 7-bit characters from NRC sets.
Reset CSI ? 4 2 l Selects Multinational mode. Generates 8-bit characters from the

multinational character set, including 7-bit characters from the
ASCII set.

Mode Sequence Action
Set CSI ? 3 h Selects 132 columns.
Reset CSI ? 3 l Selects 80 columns.

9
V

T
320

P
ro

g
ram

m
in

g

Chapter Three - VT320 Programming 124

3.5.12.9 Cursor Key Mode (DECCKM)

Cursor Key mode determines the character sent by the cursor keys.

3.5.12.10 Insert/Replace Mode (IRM)

Insert/Replace mode determines how the emulator adds characters to the screen.

3.5.12.11 Keyboard Action Mode (KAM)

Keyboard Action mode lets your program lock and unlock the keyboard. When the keyboard is locked it cannot
send codes to the program.

3.5.12.12 Keypad Mode (DECKPAM/DECKPNM)

The auxiliary keypad generates either numeric characters or control functions.

Mode Sequence Action
Set CSI ? 1 h Causes the cursor keys to send application control functions.
Reset CSI ? 1 l Causes the cursor keys to send ANSI cursor control sequences.

Mode Sequence Action
Set CSI 4 h Selects Insert mode. New characters move old characters to the right.
Reset CSI 4 l Selects Replace mode. New characters replace old characters at the

cursor position. The old character is erased.

Mode Sequence Action
Set CSI 2 h Locks the keyboard.
Reset CSI 2 l Unlock the keyboard, unless it is locked by DC3.

Mode Sequence Action
Application
(DECKPAM)

ESC = Selects Application keypad mode. Keypad keys send application
control functions.

Numeric
(DECKPNM)

ESC > Selects Numeric keypad mode. Keypad keys send numeric, comma,
period, and minus sign codes. PF1 - PF4 send control functions.

125

3.5.12.13 Line Feed/New Line Mode (LNM)

Line Feed/New Line mode selects the control character(s) sent to the application by the Return and Enter keys.

3.5.12.14 Numeric Keypad Mode (DECNKM)

Numeric Keypad mode selects whether the emulator sends numeric characters or application sequences for the
numeric keypad.

3.5.12.15 Origin Mode (DECOM)

Origin mode allows cursor addressing relative to a user-defined origin.

3.5.12.16 Print Extent Mode (DECPEX)

Print Extent mode selects the full screen or the scrolling region for a print screen operation.

Mode Sequence Action
Set CSI 2 0 h Causes a received LF, FF, or VT code to move the cursor to

the first column of the next line. Return sends CR and LF.
Reset CSI 2 0 l Causes a received LF, FF, or VT code to move the cursor to

the next line in the current column. Return sends CR only.

Mode Sequence Action
Set CSI ? 66 h Numeric keypad sends application sequences.
Reset CSI ? 66 l Numeric keypad sends numeric characters.

Mode Sequence Action
Set CSI ? 6 h Selects home position as the top margin of the user-defined scrolling

region. The cursor cannot move out of the scrolling region. All cursor
positioning is relative to the top of the scrolling region.

Reset CSI 2 0 l Causes a received LF, FF, or VT code to move the cursor to the next
line in the current column. Return sends CR only.

Mode Sequence Action
Set CSI ? 1 9 h Selects full screen for a print screen operation.
Reset CSI ? 1 9 l Selects the scrolling region for a print screen operation.

9
V

T
320

P
ro

g
ram

m
in

g

Chapter Three - VT320 Programming 126

3.5.12.17 Print Form Feed Mode (DECPFF)

This mode determines whether the emulator sends a print termination character after a screen print. The form
feed character (FF) serves as the print termination character.

3.5.12.18 Screen Mode (DECSCNM)

Screen mode selects a normal or reverse video display on the screen.

3.5.12.19 Scrolling Mode (DECSCLM)

There are two methods of scrolling; jump and smooth scroll.

3.5.12.20 Select Status Display (DECSASD)

Selects whether the emulator sends data to the main display (first 24 lines) or the status line (25th line). Available
in VT300 mode only.

CSI Ps $ } Ps Display option
0 data is sent to the main display only
1 data is sent to the status line only

Mode Sequence Action
Set CSI ? 1 8 h Selects F

F as the print termination character. The emulator sends
this character to the printer after each print screen operation.

Reset CSI ? 1 8 l Selects no termination character. The emulator does not send a
F

F to the printer after each print screen operation.

Mode Sequence Action
Set CSI ? 5 h Select reverse video.
Reset CSI ? 5 l Select normal screen.

Mode Sequence Action
Set CSI ? 4 h Select smooth scroll.
Reset CSI ? 4 l Select jump scroll.

127

3.5.12.21 Select Status Line Type (DECSSDT)

Enables the host to select the type of status line.

CSI Ps $ ~ Ps Status line selection
0 no status line
1 indicator
2 host-writable

Note: If the status line is changed from indicator to host-writable, the new status line is empty.

When the host-writable status line is selected, most control functions affecting the main display affect the status
line. The following table lists the exceptions.

3.5.12.22 Send/Receive Mode (SRM)

Send/Receive mode turns local echo on or off.

Function Effect
ANSI mode Ignored if received in the status line.
C1 transmissions Affects main display and status line.
Cursor position controls Affects only the column parameters.
Hard terminal reset Erases and exits status line.
Insert/replace mode Affects main display and status line.
Screen alignment test No effect.
Screen mode Affects main display and status line.
Scrolling mode Affects main display and status line.
Select character set The same character set is used in both the main display and status line.
Set conformance test Exits status line.
Soft terminal reset Exits status line.
Tab stops Affects main display and status line.
Text cursor enable mode The cursor can be individually enabled in the main display or status line.

Table 3-40 Control Function Effects on the Status Line

Mode Sequence Action

Set CSI 1 2 h Disables local echo. When the emulator sends characters to
the host, the host must echo characters back to the emulator.

Reset CSI 1 2 l Enables local echo. When the emulator sends characters, the
characters are automatically sent to the screen.

9
V

T
320

P
ro

g
ram

m
in

g

Chapter Three - VT320 Programming 128

3.5.12.23 Text Cursor Enable Mode (DECTCEM)

Text Cursor Enable mode determines if the text cursor is visible.

3.5.13 Terminal Reset Mode
There are two terminal reset control sequences: a soft terminal reset, and a hard terminal reset.

3.5.13.1 Soft Terminal Reset

The DECSTR sequence sets the terminal to the states listed below. The DECSTR sequence is as follows:

CSI ! p

3.5.13.2 Hard Terminal Reset

A hard terminal reset is implemented by clickingExecute - Reset .

Mode Sequence Action
Set CSI ? 2 5 h Makes the cursor visible.
Reset CSI ? 2 5 l Make the cursor invisible.

Sequence State
Text Cursor On
Insert/Replace Replace
Origin Mode Absolute
Auto Wrap Off
Keyboard Action Unlocked
Keypad Mode Numeric
Cursor Key Mode Normal
Top Margin 1
Bottom Margin 24
Character Sets VT320 defaults
Cursor Position Home
SGR Write State Normal
Origin Mode Normal (reset)
National/Multinational Multinational
Video Character Attributes Normal
Selective Erase Attributes Normal (erasable)

Table 3-41 Soft Terminal Reset States

129

3.5.14 Programming User Defined Keys (UDKs)
When the terminal is in VT300 mode, you can download key sequences into the programmable function keys
using DECUDK device control strings. To access the keys programmed value, press Shift and the function key.

The emulator has 512 bytes available for 20 programmable function keys. (The VT320 only has 256 bytes
available for 15 function keys). Space is supplied on a first come-first serve basis. After the 512 bytes are used,
you must clear space to redefine keys. There are three ways to clear space:

1) Redefine a key (or keys) using a DECUDK.

2) Clear a key (or keys) using a DECUDK.

3) Clear the definition by clickingExecute - Reset .

3.5.14.1 DECUDK DCS Format

The Device Control String (DCS) format for downloading UDKs is as follows:

DCS Pc;Pl | Ky1/st1;ky2/st2;...kyn/stn ST

DCS The Device Control String introducer,DCS is an 8-bit character.ESCP is the 7-bit coding equivalent.
Pc The Pc (clear parameter) determines which keys are cleared, and when. A value of 0 (or no value)

clears all keys, and 1 clears each key to be reloaded just before reloading it.

Pl The Pl (lock parameter) determines whether the key definitions are locked or not after you load
them. A value of 0 (no value) locks the keys (non-define). A value of 1 does not lock them (define).

| This is the final character. It designates the control string as a DECUDK.

Kyn/stn This is the key definition string. Each string consists of a key selector number (Kyn) and a string
parameter (stn) separated by a slash. The Kyn specifies the key to be redefined and the stn is the
encoded contents of the string. The stn consists of hex pairs.

ST The string terminator is an 8-bit control character that is expressed asESC \ for 7-bit coding.

The following is a list of definable keys and their identifying values:

The tokens UDK1 - UDK5 are not assigned in the default keyboard configuration. They must be assigned with the
Keyboard Mapping feature.

Token Value Token Value Token Value

UDK1
UDK2
UDK3
UDK4
UDK5
UDK6
UDK7

12
13
14
15
16
17
18

UDK11
UDK12
UDK13
UDK14
UDK8
UDK9
UDK10

23
24
25
26
19
20
21

UDK15
UDK16
UDK17
UDK18
UDK19
UDK20

28
29
31
32
33
34

9
V

T
320

P
ro

g
ram

m
in

g

Chapter Three - VT320 Programming 130

3.5.14.2 Guidelines for Loading Keys

o Use the UDK clear parameter to reclaim key definition space.

o Generally, you should not leave keys unlocked.

o The host must keep track of the available space for definitions.

o If you redefine a key, the old sequence is lost.

o The emulator uses a special lock for the programmable keys. The lock can be turned on with a DECUDK,
but can only be unlocked by the UDK unlock parameter. The lock acts globally over all programmable
keys.

o All key definitions are stored in volatile RAM. If there is a power loss, the key definitions are lost. An
invalid DCS in a key definition causes an aborted load. An aborted load locks the keys, saves the
successfully loaded keys, and sends the rest of the DECUDK sequence to the screen.

3.5.14.3 Examples for Using DECUDK

Example 1: DCS 0;1| ST

Clears all of the UDKs.

Example 2: DCS 1;0| ST

Locks the UDKs.

Example 3: DCS 1;1|34/5052494E54 ST

Clears and leavesUDK20 unlocked. Then, definesUDK20 as “PRINT”.

P = 50 hex
R = 52 hex
I = 49 hex
N = 4E hex
T = 54 hex

Note: DCS is also represented by the 7-bit equivalent ofESC P.
ST is also represented by the 7-bit equivalent ofESC \ .

131

3.5.15 DCS Private Control Sequences
DCS private sequences are control sequences supported only by a Minisoft emulator. They are not available on
VT320 terminals.

Note: CSI (Hex 9B) is the C1 Control Sequence Introducer. The 7-bit equivalent ofCSI is ESC [.
ST (Hex 9C) is the C1 String Terminator. The 7-bit equivalent ofST is ESC \.

3.5.15.1 Example - DCS Private Sequence

CSI 7m CSI 0;3;1|User Defined Status Line S
T

Writes “User Defined Status Line” in reverse video. The status line must have been previously enabled.

CSI 6|

Sent by the host to the emulator, generates the following identification report:

ESC 5 ETERM32

Name Sequence Action
Enable User Status
Line

CSI 0;0| Enables the emulator status line for the host. When the
emulator receives the enable command, it displays the
previous user-defined status line. If the status line was
not previously downloaded, it is cleared.

Disable User Status
Line

CSI 0;1| Disables the display of the user-defined status line and
redisplays the emulator status line. The contents of the
downloaded status line are not destroyed. It may be
redisplayed by sending an enable sequence.

Erase Status Line CSI 0;2| Erases the status line and clears the down-loaded data.
Write Status Line CSI 0;3;Pc| ...string... ST Writes the characters between the vertical bar and the

string terminator to the status line starting at column Pc.
Set/Reset Local Echo CSI 2;n| Enables local echo if n=1. Disables local echo if n=0.
WordPerfect Mode CSI 3;n| Enables WordPerfect mode if n=1, disables if n=0.
Printer Port Control CSI 4;pl| Controls the assignment of the printer port.

Where pl is: 0=none, 1=LPT1, 2=LPT2, 3=LPT3,
4=COM1, 5=COM2, 6=COM3

Execute Emulator
Command

CSI 5| ...command
string... ST

Sends the command string to the emulator for execution.
The command string can contain any valid emulator
command or reference a command file.

Request Product
Identification

CSI 6| If this sequence is sent to a Minisoft emulator, the emulator
returns an identification report to the host in the format:

ESCn xxxx
Where: n is a single ASCII digit indicating the number

of characters to follow (n not included).
xxxx is the product identification string

Set Lines Per Screen CSI 7;pl| Where: pl is the number of lines per screen.

Table 3-42 DCS Private Control Sequences

9
V

T
320

P
ro

g
ram

m
in

g

Chapter Three - VT320 Programming 132

3.6 REPORTS
Reports are sent by the emulator in response to requests from the host computer. These new reports provide
device attributes, operating status and terminal state and mode information to the host. The host uses the reports
to match the computing environment and emulator.

3.6.1 Device Attributes
Device attributes are used to give the host information regarding the emulator.

3.6.1.1 Primary Device Attributes

Primary device attributes include the service class code and basic attributes. The response of the emulator to
this request depends on the type of terminal selected for emulation inSetup - Terminal .

Exchange Sequence
Host to Emulator CSI c or CSI 0 c
Emulator to Host CSI ? Psc ; Ps1 ; ... Psn c

Psc
1
6
62
63

Service class code based on operating level
level 1 (VT100)
level 1 (VT102)
level 2 (VT200)
level 3 (VT300)

Ps1
1
2
6
7
8
9

Basic attributes supported by the emulator
132 columns
printer port
selective erase
soft character set
user-defined keys
national replacement character sets

Table 3-43 Primary Device Attribtes

133

3.6.1.2 Secondary Device Attributes

The secondary device attributes include identification code, firmware version and hardware options.

3.6.2 Device Status Reports
The emulator uses device status reports to give the host information on cursor position, keyboard dialect,
operating status, printer status and user-defined keys.

3.6.2.1 Cursor Position

3.6.2.2 Keyboard Dialect

Exchange Sequence
Host to Emulator CSI > c or CSI > 0 c
Emulator to Host CSI > Pp ; Pv ; Po c

Pp
24

Emulator identification code
VT320

Pv Firmware version level of the emulator
Po
0

Hardware options
there are no options for the VT320

Table 3-44 Secondary Device Attributes

Exchange Sequence Function
Host to Emulator CSI 6 n Host requests cursor position
Emulator to Host CSI Pl ; Pc R The emulator specifies Pl (line) and Pc (column) as

current cursor position

Exchange Sequence Function

Host to Emulator CSI ? 26 n Host requests keyboard

Emulator to Host CSI ? 27 ; Pd n
Pd Keyboard dialect
1 North American

Keyboard dialect (Pd) is reported

9
V

T
320

P
ro

g
ram

m
in

g

Chapter Three - VT320 Programming 134

3.6.2.3 Operating Status

3.6.2.4 Printer Status

3.6.2.5 User-Defined Key (UDK) Status

This control function is only valid in VT300 mode.

Exchange Sequence Function
Host to Emulator CSI 5 n Host requests the emulator’s operating status
Emulator to Host CSI 0 n or

CSI 3 n
The emulator indicates there is no malfunction
The emulator indicates there is a malfunction

Exchange Sequence Function
Host to Emulator CSI ? 15 n Host requests current printer status
Emulator to Host CSI ? 13 n

CSI ? 10 n
CSI ? 11 n

No printer
Printer ready
Printer not ready

Exchange Sequence Function
Host to Emulator CSI ? 25 n Host requests if UDKs are locked or unlocked
Emulator to Host CSI ? 20 n

CSI ? 21 n
UDKs are unlocked
UDKs are locked

135

3.6.3 Terminal State Reports
Terminal state reports include the current setting for all of the emulator’s features except user-defined keys. The
host can use the report information to save the current state. The host can then temporarily change the operating
state and, later, restore the emulator to the saved state. This control function is valid only in VT300 mode.

Note: Software should not expect the format of the terminal state report to be the same for all VT300 terminals.

3.6.3.1 Restore Terminal State

This sequence is sent from the host to restore the emulator to the previous state specified in the terminal state
report.

Note: If an invalid value is received, no changes are made.

Exchange Sequence
Host to
Emulator

CSI Ps $ u
Ps
0
1

Report requested
ignored, no report sent
terminal state report requested

Emulator
to Host

DCS 1 $ s D1...Dnn <checksum1><checksum2> ST
D1...Dnn Data string indicating the status of emulator functions. There are nn bytes in

the string. D1...Dnn are each in the range of column 4 rows 0 to 15 in the
code table. Bit 6 of each Dn byte is always on; bit 7 is always off.

<checksum1>
<checksum2>

2-byte checksum of all data (D1...Dnn) in the report. Checksum is equal to the
2’s complement of the sum of all data elements in the report (D1+D2+...Dn).

Table 3-45 Terminal State Report

Restore Sequence
Host to Emulator DCS Ps $ p D...D ST

Ps

0
1

Indicates whether or not the host succeeds in restoring the terminal state. Must
be 1 for a successful restore.

error, restore ignored
restore to previous terminal state based on terminal state report

D...D Data string containing the restored information. This string is identical to the data
string used by the terminal state report.

Table 3-46 Restore Terminal State

9
V

T
320

P
ro

g
ram

m
in

g

Chapter Three - VT320 Programming 136

3.6.4 Presentation State Reports
There are two presentation reports: cursor information and tab stop. The host can use the report information to
save the current state. The host can then temporarily change the presentation state and, later, restore the emulator
to the saved state. This control function is only valid in VT300 mode.

3.6.4.1 Request Presentation State Report

3.6.4.2 Cursor Information

The cursor information report gives the status of the cursor position, including visual attributes and character
protection attributes.

The individual parameters that make up the data string are described in the following table.

Request Sequence
Host to Emulator CSI Ps $ w

Ps
0
1
2

Indicates which report is requested
error, request ignored
cursor information report
tab stop report

Table 3-47 Request Presentation State Report

Report Sequence

Emulator to Host DCS 1 $ u D...D ST

D...D Data string of cursor information in the following format:
Pr; Pc; Pp; Srend; Satt; Sflag; Pgl; Pgr; Scss; Sdesig

Table 3-48 Cursor Information Report

137

Parameter Description

Pr Row number of the cursor position

Pc Column number of the cursor position

Pp Current page number - always 1 for VT320

Srend One or more characters indicating visual attributes currently in use for writing. The character
converts to an 8-bit binary number. The attributes can then be found in the following list. The list
is ordered from most significant bit (8) to least significant bit (1).

Bit Attribute Bit Value

8 Always 0 (off)

7 Always 1 (on)

6 Extension indicator 0
1

no more attribute data
another character of visual attribute data follows this one

5 Always 0 (off)

4 Reverse video 0
1

off
on

3 Blinking 0
1

off
on

2 Underline 0
1

off
on

1 Bold 0
1

off
on

Satt One or more characters indicating selective erase attributes currently set for writing. The
character converts to an 8-bit binary number. The attributes can be found in the following list.

Bit Attribute Bit Value

8 Always 0 (off)

7 Always 1 (on)

6 Extension indicator 0
1

no more protection data
another character of selective erase data follows this one

5 0 - Reserved for future use

4 0 - Reserved for future use

3 0 - Reserved for future use

2 0 - Reserved for future use

1 Selective erase 0
1

off
on

Table 3-49 Cursor Information Report Data String

9
V

T
320

P
ro

g
ram

m
in

g

Chapter Three - VT320 Programming 138

Table 3-49 Cursor Information Report Data String (cont’d)

Parameter Description
Sflag Character(s) indicating flags and modes the terminal must save. The character converts to an 8-bit

binary number.
Bit Attribute Bit Value
8 Always 0 (off)
7 Always 1 (on)
6 Extension indicator 0

1
no more flag data
another character of flag data follows this one

5 0 Reserved for future use
4 Autowrap 0

1
autowrap not pending
autowrap pending

3 Single shift 3 setting 0
1

single shift 3 is off
G3 is mapped into GL for the next typed character only

2 Single shift 2 setting 0
1

single shift 2 is off
G2 is mapped into GL for the next typed character only

1 Origin Mode 0
1

origin mode reset
origin mode set

Pgl Indicates the number of the logical character set (G0 through G3) mapped into GL.
0 G0 is in GL
1 G1 is in GL
2 G2 is in GL
3 G3 is in GL

Pgr Indicates the number of the logical character set (G0 through G3) mapped into GR.
0 G0 is in GR
1 G1 is in GR
2 G2 is in GR
3 G3 is in GR

Scss Indicates the size of the character sets in G0 - G3. The character converts to an 8-bit binary number.
Bit Attribute Bit Value
8
7

Always 0 (off)
Always 1 (on)

6 Extension indicator 0
1

no more size data
another character of character size data follows this one

5 0 Reserved for future use
4 G3 set size 0

1
94 characters
96 characters

3 G2 set size 0
1

94 characters
96 characters

2 G1 set size 0
1

94 characters
96 characters

1 G0 set size 0
1

94 characters
96 characters

Sdesig String of intermediate and final characters indicating the character sets designated as G0 through
G3. These final characters are the same as those used in select character set sequences.

139

3.6.4.3 Tab Stop Report

If the presentation state report requests information on the tab stops, the emulator returns the following:

3.6.4.4 Restore Presentation State

The restore presentation state report restores the emulator to a previous saved state based on one of the
presentation state reports: cursor information or tab stop. The information from only one report at a time can be
restored. This sequence is only valid in VT300 mode.

Note: If there is an invalid value in the restore sequence, the rest of the sequence will be ignored. This may leave
the emulator in a partially restored state.

3.6.5 Mode Settings
The host can request current settings of any ANSI or DEC private modes. The emulator returns a report indicating
which modes are set and reset. The host uses the report information to save the current mode settings. The host
then temporarily changes the modes and, later, restores the emulator to the saved modes with the set and reset
mode sequences. This control function is only valid in VT300 mode.

Report Sequence

Emulator to Host DCS 2 $ u D...D ST

D...D Data string indicating the column number location of each tab
stop. Column numbers are separated by slashes (/).

Table 3-50 Tab Stop Report

Restore Sequence
Host to Emulator DCS Ps $ t D...D ST

Ps

0
1
2

Indicates the format of the data string, D...D, which
corresponds to one of the presentation state report formats

error, restore ignored
cursor information report format
tab stop report format

D...D Data string containing the restored information. This string is
identical to the one used in the report.

Table 3-51 Restore Presentation State

9
V

T
320

P
ro

g
ram

m
in

g

Chapter Three - VT320 Programming 140

3.6.5.1 Request Mode

The host sends the following sequence to find out if a particular mode is set or reset. There is a different sequence
for ANSI and DEC private modes.

The ANSI modes (Pa) are listed in the following table.

Note: Control representation and horizontal editing are permanently reset.

Request Sequence

Host to Emulator CSI Pa $ p

Pa Indicates the ANSI mode on which
the host is requesting information.

Table 3-52 Request ANSI Mode

Pa Mode

2
3
4
10
12
20

Keyboard action
Control representation *
Insert/replace
Horizontal editing
Send/receive
Line feed/new line

* Control representation is not supported.

Table 3-53 ANSI Modes

Request Sequence
Host to Emulator CSI ? Pd $ p

Pd Indicates the DEC private mode on
which the host is requesting information

Table 3-54 Request DEC Private Mode

141

The DEC private modes (Pd) are listed in the following table.

3.6.5.2 Report Mode

The ANSI mode and DEC private mode reports are given in the following table. The emulator can report on
only one mode at a time.

Pd Mode

1
2
3
4
5
6
7
8
18
19
25
42
66
67
68

Cursor keys
ANSI
Column
Scrolling
Screen
Origin
Autowrap
Autorepeat
Print form feed
Printer extent
Text cursor enable
NRC set
Numeric keypad
Backarrow key
Keyboard usage *

Table 3-55 DEC Private Modes

Report Sequence
Emulator to Host CSI Pa ; Ps $ y
(ANSI mode) Pa

Ps
0
1
2
3
4

Indicates reported ANSI mode (see Table 3-53)
Indicates mode setting

mode not recognized
set
reset
permanently set
permanently reset

Emulator to Host CSI ? Pd ; Ps $ y
(DEC private mode) Pd

Ps
0
1
2
3
4

Indicates reported DEC private mode (see Table 3-55)
Indicates mode setting

mode not recognized
set
reset
permanently set
permanently reset

Table 3-56 ANSI Mode and DEC Private Mode Report

9
V

T
320

P
ro

g
ram

m
in

g

Chapter Three - VT320 Programming 142

3.6.5.3 Set Mode

There is a separate set sequence for the ANSI modes and DEC private modes. Some of these may be affected
by soft or hard terminal resets.

3.6.5.4 Reset Mode

There is a separate reset sequence for the ANSI modes and DEC private modes. Some of these may be affected
by soft or hard terminal resets.

Set Mode Sequence
Host to Emulator CSI Pa ; ... ; Pa h
(ANSI form) Pa Indicates the ANSI mode to set. See Table 3-53 for the list of ANSI modes.

More than one value can be used in the sequence.
Host to Emulator CSI ? Pd ; ... ; Pd h
(DEC private form) Pd Indicates the DEC private mode to set. See Table 3-55 for the list of DEC

private modes. More than one Pd value can be used in the sequence.

Table 3-57 ANSI and DEC Private Mode Set Sequence

Reset Mode Sequence
Host to Emulator CSI Pa ; ... ; Pa l
(ANSI form) Pa Indicates the ANSI mode to reset. See Table 3-53 (ANSI Modes). More

than one value can be used in the sequence.
Host to Emulator CSI ? Pd ; ... ; Pd l
(DEC private form) Pd Indicates the DEC private mode to reset. See Table 3-55 (DEC Private

Modes). More than one Pd value can be used in the sequence.

Table 3-58 ANSI and DEC Private Mode Reset Sequence

143

3.6.6 Save and Restore Cursor State
The save cursor sequence stores many of the emulator’s selections and settings. The host can then temporarily
change the settings. The restore cursor sequence restores the emulator to the saved settings.

Note: The emulator maintains a separate save cursor buffer for the main display and the status line. A separate
operating state for the main display and the status line can be saved.

3.6.7 Control Function Settings
The host can request the current selection or setting of the following control functions: active status display,
conformance level, status line type, top and bottom margins and graphic rendition.

The emulator returns a report with the requested information. The host can use the report information to save
the current setting. The host can then temporarily change the control function settings and later, restore the
emulator to the saved settings. This control function is only valid in VT300 mode.

Note: The control function request can only ask about one function at a time.

Name Sequence Function

Save cursor ESC 7 Saves the following:
- Cursor position
- Character attributes set by select graphic rendition sequence
- Character set (G0, G1, G2, G3) currently in GL or GR
- Wrap flag (autowrap or no autowrap)
- State of origin mode
- Selective erase attribute
- Any single shift 2 or single shift 3 functions sent

Restore cursor ESC 8 Restores the emulator to the saved state. If nothing was saved with the
save cursor sequence, the following occurs:
- Moves cursor to home position (upper left of screen)
- Resets origin mode
- Turns all character attributes off
- Maps ASCII set into GL, and DEC Supplemental Graphic set into GR

Table 3-59 Saving and Restoring the Cursor State

9
V

T
320

P
ro

g
ram

m
in

g

Chapter Three - VT320 Programming 144

3.6.8 User-Preferred Supplemental Set
The host can request the current user-preferred supplemental character set. This control function is only valid
in VT300 mode.

Exchange Sequence
Host to
Emulator

DCS $ q D...D ST
D...D Indicates the control function in question. Consists of the intermediate

and/or final characters of the control function requested.
$}
“q
”p
$~
r
m

active status display
character attribute
conformance level
status line type
top and bottom margins
graphic rendition

Emulator to
Host

DCS Ps $ r D...D ST
Ps
0
1

Indicates if a request from the host is valid
invalid
valid

D...D Indicates the current setting of the control function requested. Consists of
all control function characters except the CSI or ESC[introducer characters.

Table 3-60 Control Functions Setting Report

Exchange Sequence Function
Host to Emulator CSI & u Requests current user-preferred supplemental set
Emulator to Host DCS 0 ! u % 5 ST DEC Supplemental Graphic set

DCS 1 ! u A ST ISO Latin-1 Supplemental set

Table 3-61 User-Preferred Supplemental Character Set

145

u
WYSE,SCO-ANSI&ANSIPROGRAMMING

OVERVIEW
This chapter describes the character encoding concepts for the WYSE, SCO-ANSI and ANSI
terminals. It covers control functions, such as control characters and escape sequences. Control
functions are used in a program to specify how the emulator processes, sends and displays characters.
Each control function has a unique name and each name has a unique, mnemonic abbreviation.

Chapter 4 - WYSE, SCO-ANSI and ANSI Programming 146

4.1 WYSE PROGRAMMING SEQUENCES

4.1.0.1 Screen Feature Codes

4.1.1 Cursor Addressing
The following instructions apply only to cursor addressing in the WY-50; TVI-910/920/925.

1) SendESC=rc to move the cursor to a specific row and column of an 80-column screen.

Where: r is row code (see Row/Column Codes).

c is column code (see Row/Column Codes).

2) SendESC a rr R ccc C to move the cursor to a specified row and column of either an 80- or 132-column
screen.

Where: rr is ASCII encoded decimal value of row relative to home, one or two digits.
R is ASCII R.
ccc is ASCII encoded decimal value of column relative to home, up to three digits.
C is ASCII C.

Example: ESC a 1 R 1 C positions the cursor at true home.
ESC a 10 R 10 C positions the cursor at row 10, column 10.

n Screen Cursor Setting
0 Cursor display off
1 Cursor display on (default)
2 Steady block cursor
3 Blinking line cursor
4 Steady line cursor
5 Blinking block cursor (default)
A Normal protect character
6 Reverse protect character
7 Dim protect character
8 Screen display off
9 Screen display on (default)
: 80-column screen (default)
; 132-column screen
< Smooth scroll at 1 row per second
= Smooth scroll at 2 rows per second
> Smooth scroll at 4 rows per second
? Smooth scroll at 8 rows per second
@ Jump scroll (default)

Table 4-1 Screen Feature Codes

147

4.1.2 Row/Column Codes

Row WY-50 TVI-910/920/925
Row Code

Column WY-50 TVI-910/920/925
Column Code

Column
(cont’d)

WY-50 TVI-910/920/925
Column Code (cont’d)

1 (space) 1 (space 41 H
2 ! 2 ! 42 I
3 “ 3 ” 43 J
4 # 4 # 44 K
5 $ 5 $ 45 L
6 % 6 % 46 M
7 & 7 & 47 N
8 ‘ 8 ‘ 48 O
9 (9 (49 P
10) 10) 50 Q
11 * 11 * 51 R
12 + 12 + 52 S
13 ‘ 13 “ 53 T
14 - 14 - 54 U
15 . 15 . 55 V
16 / 16 / 56 W
17 0 17 0 57 X
18 1 18 1 58 Y
19 2 19 2 59 Z
20 3 20 3 60 [
21 4 21 4 61 \
22 5 22 5 62]
23 6 23 6 63 ^
24 7 24 7 64 _

25 8 65 ‘
26 9 66 a
27 : 67 b
28 ; 68 c
29 < 69 d
30 = 70 e
31 > 71 f
32 ? 72 g
33 @ 73 h
34 A 74 i
35 B 75 j
36 C 76 k
37 D 77 l
38 E 78 m
39 F 79 n
40 G 80 o

Table 4-2 Row/Column Codes

Chapter 4 - WYSE, SCO-ANSI and ANSI Programming 148

4.1.3 Display Attributes
An attribute is written into the current cursor location and occupies a space.

Send ESC A n ATTR to set a display attribute for a special WY-50 message field, and send ESC G ATTR to
set a display attribute for individual data.

Where: N is the display field code (see below).
ATTR is the attribute code (see Attribute Codes)

WY-50 Display Field n
Application Display Area 0
Function Key Labeling Line 1
Local Message Field 2
Host Message Field 3

Table 4-3 Display Field Codes

Display Attributes ATTR
Blank 1
Blink 2
Dim p
Normal 0
Reverse 4
Underscore 8

Table 4-4 Display Attribute Codes

149

4.1.4 Attribute Codes
The complete attribute codes are listed in the following table.

ATTR Display Attributes
(space) Space code (20H)
0 Normal
1 Blank (no display)
2 Blink
3 Blank
4 Reverse
5 Reverse and blank
6 Reverse and blink
7 Reverse, blink and blank
8 Underscore
9 Underscore and blank
: Underscore and blink
; Underscore, blink and blank
< Underscore and reverse
= Underscore, reverse and blank
> Underscore, reverse and blink
? Underscore, reverse, blink and blank
p Dim
q Dim and blank
r Dim and blink
s Dim, blink and blank
t Dim and reverse
u Dim, reverse and blank
v Dim, reverse and blink
w Dim, reverse, blink and blank
x Dim and underscore
y Dim, underscore and blank
z Dim, underscore and blink
{ Dim, underscore, blink and blank
| Dim, underscore and reverse
} Dim, underscore, reverse and blank
~ Dim, underscore, reverse and blink

Table 4-1 Attribute Codes

Chapter 4 - WYSE, SCO-ANSI and ANSI Programming 150

4.1.5 Control Codes
Press CTRL with the control key (see table below) to enter the control code via the keyboard.

Where: Control key is the associated alphanumeric key (below).

151

Control Code ASCII Hex
Code

Display
Symbol

Control Key WY-50 Action

NULL 00 (blank) @ or ‘ No action.
SOH 01 SH A or a No action.
STX 02 SX B or b No action.
ETX 03 EX C or c No action.
EOT 04 ET D or d No action.
ENQ 05 EQ E or e Returns ACK if not busy.
ACK 06 AK F or f No action.
BEL 07 BL G or g Sounds the beeper.
BS 08 BS H or h Backspaces the cursor.
HT 09 HT I or i Tabs the cursor.
LF 0A LF J or j Moves cursor down.
VT 0B VT K or k Moves cursor up.
FF 0C FF L or l Moves cursor right.
CR 0D CR M or m Moves cursor to far left position of row.
SO 0E SO N or n Unlocks the keyboard.
SI 0F SI O or o Locks the keyboard.
DLE 10 * P or p No action.
DC1 (XON) 11 * Q or q Enables the transmitter
DC2 12 * R or r Turns on auxilary print; data displays.
DC3 (XOFF) 13 * S or s Stops transmission to host computer.
DC4 14 * T or t Turns off auxilary and transparent print.
NAK 15 * U or u No action.
SYN 16 * V or v No action.
ETB 17 * W or w No action.
CAN 18 * X or x Transparent print.
EM 19 * Y or y No action.
SUB 1A * Z or z Clears all unprotected characters to spaces.
ESC 1B * { or [Initiates an escape sequence.
FS 1C * | or \ No action.
GS 1D * } or] No action.
RS 1E * ^ or ~ Moves cursor to the home position.
US 1F * _ or DEL Moves cursor down one row to far left position.

* Due to font limitations, we are unable to display the actual graphic display symbol at this time.

Table 4-1 Control Codes

Chapter 4 - WYSE, SCO-ANSI and ANSI Programming 152

4.1.6 Escape Codes

Escape Code Action

ESC (space) Reports the terminal identification to the host computer. Sends 50 CR.

ESC ! Writes all unprotected character positions with a specified attribute code. This has a
format of: ESC ! ATTR (Where: ATTR is the atrtribute code. See Attribute Codes.)

ESC “ Unlocks the keyboard.

ESC # Locks the keyboard.

ESC & Turns the protect submode on and prevents the auto scroll operation.

ESC ‘ Turns the protect submode off and allows the auto scroll operation.

ESC (Turns the write protect submode off.

ESC) Turns the write protect submode on.

ESC * Clears the screen to nulls. The protect submode is turned off.

ESC + Clears the screen to spaces. The protect submode is turned off.

ESC , Clears the
screen to
protected spaces.
The protect
submode is turned
off.

ESC - Moves the cursor to a specified text segment. This has a multiple code sequence of:
ESC - arc (Where: n is the text segment number - 0 or 1; r is the row code - see
Row/Colum Codes; and c is the column code - see Row/Column Codes.

ESC . Clears all unprotected character positions with a specified character code. This has a
format of: ESC. CODE (Where: CODEis the character hex value.)

ESC \ Transmits the active text segment number and cursor address.

ESC 0 Clears all tab settings.

ESC 1 Sets a tab stop.

ESC 2 Clears a tab stop.

ESC 4 Sends all unprotected characters from the start-of-row to the host computer.

ESC 5 Sends all unprotected characters from the start-of-text to the host computer.

ESC 6 Sends all characters from the start-of-row to the host computer.

ESC 7 Sends all characters from the start-of-text to the host computer.

ESC 8 Enters a start-of-message character (STX).

ESC 9 Enters an end-of-message character (ETX).

ESC : Clears all unprotected characters to nulls.

Table 4-2 Escape Codes

153

Table 4-7 Escape Codes (cont’d)

Escape Code Action
ESC ? Transmits the cursor address for the active text segment of an 80-column screen only.

The format is: rc CR (Where: r is the row code - see Row/Column Codes; and c is the
column - see Row/Column Codes.)

ESC @ Sends all unprotected characters from the start-of-text to the auxiliary port. Each row
is terminated wit: CR LF NULL

ESC A Sets a video attribute for a specific message field or the entire application display
area. This has a multiple code sequence of: ESC A n ATTR (Where: n os the fireld
code - See Display Attributes; and ATTR is the attribute code - see Attribute Codes.)

ESC B Places the terminal in block mode.
ESC C Places the terminal in a conversation mode.
ESC D Selected the full duplex or half duplex conversation modes. This has the multiple code

sequence: ESC D x)Where: x is F for full duplex mode or H for half duplex mode.)
ESC E Inserts a row of spaces.
ESC F Enters a message in the host message field. This has a format of: ESC F aaaa CR

(Where: aaaa is a character string of up to 46 characters for an 80-column mode
screen or up to 100 characters for a 132-column screen.

ESC G Sets a video attribute within the application display are. The attribute occupies a
space. This has a multiple code sequence of: ESC G ATTR (Where: ATTR is the
attribute code - see Attribute Codes.)

ESC H Enters a graphic character at the cursor location. This has a multiple code sequence
of: ESC H x (Where: x is the graphic chracter code - see Graphic Character.)
ESC H STX (CTRL B) turns on the graphic submode.
ESC H ETX (CTRL C) turns off the graphic submode.

ESC I Moves the cursor left to the previous tab stop.
ESC J Activates the alternate text segment.
ESC K Activates the alternate text segment. See ESC J.
ESC L Sends all characters unformatted to the auxiliary port. Attribute codes are sent as

spaces. Row-end sequences are not sent.
ESC M Causes the terminal to send the character at the cursor postions to the host computer.
ESC N Turns the no scoll submode on.
ESC O Turns the no scoll submode off.
ESC P Sends all protected and unprotected characters to the auxiliary port, regardless of the

mode setting.
ESC Q Inserts a character.
ESC R Deletes a row.
ESC S Sends a message unprotected.
ESC T Erases all characters/
ESC U Turns the monitor submode on.
ESC V Sets a protected column.
ESC W Deletes a character.
ESC X Turns the monitor submode off.
ESC Y Erases all characters to the end of the active text segment and replaces them with

spaces.
ESC] Activates text segment 0.

Chapter 4 - WYSE, SCO-ANSI and ANSI Programming 154

Table 4-7 Escape Codes (cont’d)

Escape Code Action
ESC ‘ Sets the screen features. This has the following multiple code sequence: ESC ‘ n

(Where: n is the screen feature code - See Screen Feature Codes.)
ESC a Moves the cursor to a specified row and column for an 80-column or a 132-column scree.

This has a format of: ESC a rr R ccc C (Where: rr is the ASCII encoded decimal value of
the row; R is the ASCII R; ccc is the ASCII encoded decimal value of the column; and C
is the ASCII C.
For example: ESC a 1 R 1 C postions the cursor at true home.

ESC b Transmits the cursor address to the host computer for the active text segment. This
format is: rr R ccc C (Where: rr is the ASCII encoded decimal value of the row; ; R is the
ASCII R; ccc is the ASCII encoded decimal value of the column; and C is the ASCII C.

ESC i Moves the cursor to the next tab stop on the right.
ESC j Moves the cursor up one row and begins srolling at top row.
ESC k Turns the local edit submode on.
ESC l Turns the duplex edit submode on.
ESC p Sends all character unformatted to the auxiliary port. Attribute codes are sent as spaces.

Row-end sequences are not sent. The action is the same as ESC L.
ESC q Turns the insert submode on.
ESC r Turns the insert submode off.
ESC s Sends a message.
ESC t Erases all characters from the current cursor location to the end of the row and replaces

them with nulls.
ESC u Turns the monitor submode off. See ESC X.
ESC x Changes the screen display format. The sequences are:

ESC x 0 for a full screen; 24 rows by 80 or 132 columns.
ESC x 1 HSR for a horizontal screen position.
(Where: HSR is the row code for the row number 2 to 24 on which the lower text segment
starts (see Row/Column Codes).

ESC y Erases all characters from the current cursor location to the end of the active text
segment and replaces them with nulls.

ESC z Enters a message into a selected function key label field or programs a user-defined
sequence for a function key (maximum of eight label fields, shiftable to 16 for an
80-column screen; maximum of 16 label fields, shiftable to 32 for a 132-column screen).
The message format is: ESC z n aaaa CR
(Where: n is the field code - see Function Key Field Codes/Default Value Codes; aaa is a
character string of up to eight characters for an 80-column screen or up to seven
character for a 132-column screen.
ESC z n CR clears a particular function key label field.
ESC z DEL turns off the shifted function key labeling line.
The function key program format is: ESC z value SEQ DEL (Where: value is the default
value code - see Function Key Field Codes/Default Value Codes; SEQ is the program
sequence up to eight bytes (256 byte maximum for all function keys.)

ESC { Moves the cursor to the home position of the text segment.
ESC } Activates text segment 1.

155

4.1.7 Function Value Field Codes/Default Value Codes

Function Key Field Code Default Value Code
F1 0 @
Shift F1 P ‘
F2 1 A
Shift F2 Q a
F3 2 B
Shift F3 R b
F4 3 C
Shift F4 S c
F5 4 D
Shift F5 T d
F6 5 E
Shift F6 U e
F7 6 F
Shift F7 V f
F8 7 G
Shift F8 W g
F9 8 H
Shift F9 X h
F10 9 I
Shift F10 Y i
F11 : J
Shift F11 Z j
F12 ; K
Shift F12 [k
F13 < L
Shift F13 \ l
F14 = M
Shift F14] m
F15 > N
Shift F15 * n
F16 ? O
Shift F16 _ o

Note: Field codes (unshifted message) and (shifted message) specify the entire function keys
labeling line as one message field of up to 78 characters for an 80-column screen or up
to 130 characters for a 132-column screen.
80-column screen = eight function key label fields, shiftable to 16.
132-column screen = sixteen function key label fields, shiftable to 32.

Table 4-1 Field Codes and Default Value Codes

Chapter 4 - WYSE, SCO-ANSI and ANSI Programming 156

4.1.8 Key Tokens
Only those keys which generate codes in conversation mode are listed in the table below. Unless noted, the
shifted key positions generate the same code as the unshifted position. All alphanumeric keys generate the
standard ASCII codes.

Command Keys Generated Code
PRINT ESC P
SEND ESC 7
Cursor Position Keys
Cursor Down CTRL J (OAH)
Cursor Left CTRL H (08h0
Cursor Right CTRL L (0CH)
Cursor Up CTRL K (08h)
Home CTRL ^ (1EH)
Shift Home ESC {
PAGE NEXT ESC K
PAGE PREV ESC J
Editing Keys
CLR LINE ESC T
CLR SCRN ESC Y
DEL CHAR ESC W
DEL LINE ESC R
INS ESC q
INS CHAR ESC Q
INS LINE ESC E
REPL ESC r

Table 4-2 Key Tokens

157

4.2 SCO-ANSI PROGRAMMING SEQUENCES

4.2.1 Character Attributes

4.2.2 Character Sets

Sequence Function
CSI 0 m Reset attributes
CSI 1 m Bold on
CSI 4 m Underline on
CSI 5 m Blink on
CSI 7 m Reverse video on
CSI = Pn E Set or clear the blink bit (Pn = 0 or 1). Same as CSI 5 m *
CSI = Cn F Set normal foreground color to Cn *
CSI = Cn G Set normal background color to Cn *
CSI = Cn H Set reverse foreground color to Cn - Ignored *
CSI = Cn I Set reverse background color to Cn - Ignored *

* Specific to SCO 2.3 and above (Non-ANSI)

Table 4-3 Character Attributes

Sequence Function
CSI 10 m Select primary font. Causes 8-bit PC character set to be used as the

font. PC characters in the control character range are not displayed.
CSI 11 m Select first alternate font. Same as above except all characters other

than the Escape character are displayed.
CSI 12 m Select second alternate font. Displays PC character set in the 80h and

above range to be displayed as the lower character set.
CSI Pn g Display the character from cell Pn.

Table 4-2 Character Sets

Chapter 4 - WYSE, SCO-ANSI and ANSI Programming 158

4.2.3 Color Attributes

4.2.3.1 ANSI Color Attributes

4.2.3.2 SCO Xenix Color Attributes

Sequence Function
CSI 3 Pc m Set foreground color from ISO color table
CSI 4 Pc m Set background color from ISO color table
CSI 8 m Set blank - invisible characters

Table 4-3 ANSI ISO Color Sequences

Pc Color

0 Black

1 Red

2 Green

3 Yellow

4 Blue

5 Magenta

6 Cyan

Table 4-4 ANSI ISO Color Table

Sequence Function
CSI 2 ; Pf ; Pb m Set foreground (Pf) and background colors (Pb)

Table 4-5 SCO Xenix Color Sequences

159

4.2.4 Columns

4.2.5 Cursor Positioning

Cn Color Cn Color
0 Black 8 Dark Grey
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow
7 Light Grey 15 White

Table 4-6 SCO Xenix Color

Sequence Function
CSI ? 3 l Set 80 columns

Table 4-7 Columns

Sequence Function
CSI Pn Z Move cursor backwards Pn stops
CSI Pn S Scroll up Pn lines
CSI Pn T Scroll down Pn lines
CSI P1; P2 H Direct cursor position
CSI P1; P2 f Same as above
CSI Pn A Move cursor up Pn lines
CSI Pn B Move cursor down Pn lines
CSI Pn C Move cursor right Pn columns
CSI Pn D Move cursor left Pn columns
CSI Pn ‘ Position cursor to column Pn
CSI Pn a Move cursor Pn positions to the right relative. Does not wrap.
CSI Pn d Move cursor to row Pn
CSI Pn e Move cursor down Pn rows
CSI Pn F Move cursor to beginning of line Pn lines up
CSI Pn E Move cursor to beginning of line Pn lines down

Table 4-8 Cursor Positioning

Chapter 4 - WYSE, SCO-ANSI and ANSI Programming 160

4.2.6 Inserting

Sequence Function
CSI Pn J Erase display

Pn = 0 From cursor to end of display
Pn = 1 From cursor to beginning of display
Pn = 2 Entire display

CSI Pn K Erase in line
Pn = 0 From cursor to end of line
Pn = 1 From beginning of line to cursor
Pn = 2 Entire line

CSI Pn X Erase Pn number of characters

Table 4-9 Inserting

161

4.2.7 Key Assignments
SCO ANSI uses function keys F1-F12, Ctrl F1-F12, Shift F1-F12, and Ctrl-Shift F1-F12. Although the emulator
has tokens for these keys, they are not currently available through the Keyboard Mapper.

4.2.8 Keyboard Control

Key Code
F1 -F12 ESC [M...ESC [V+
Shift F1-F12 ESC [Y...ESC [Z ESC [a...ESC [j
Ctrl F1-F12 ESC [k...ESC [v
Ctrl-Shift F1-F12 ESC [w...ESC [z ESC [@...ESC [}
Up Arrow ESC [A
Dn Arrow ESC [B
Right Arrow ESC [C
Left Arrow ESC [D
Keypad 0-9 0...9 (NUMLCK in numeric mode)
Home ESC [H
PgUp ESC [I
End ESC [F
PgDn ESC [G
Ins ESC [L
Del 0x7F
Shift Tab ESC [Z
Ctrl Enter 0x81
Ctrl Home 0x82
Ctrl PgUp 0x83
Ctrl BS 0x84
Ctrl End 0x85
Ctrl PgDn 0x86
Ctrl KP - 0x87
Ctrl KP + 0x88
Ctrl Left Arrow 0x89
Ctrl Right Arrow 0x8a

Table 4-10 Key Assignments

Sequence Function
CSI 2 h Lock keyboard
CSI 2 l Unlock keyboard

Table 4-11 Keyboard Control

Chapter 4 - WYSE, SCO-ANSI and ANSI Programming 162

4.2.9 Report

4.3 ANSI PROGRAMMING SEQUENCES

4.3.1 ANSI Color Support
ANSI color support allows the character, character cell, and screen background colors to be selected directly by
sending control sequences from the host.

ANSI colors are selected through extensions to the VT320 Set Character Attribute control sequence. The
following table describes the control sequences supported.

Sequence Function
CSI 2 i Send screen to host with a line feed after each line.

Table 4-12 Report

163

Escape Sequence Function

Set Character Attributes and ANSI Colors
CSIPs;Ps;...m

Character attributes

Ps = 0 Resets all colors and video attributes to defaults

Ps = 1 Bold on. If the text color has been changed using an ANSI color control sequence,
bold will be the intensified text color. Otherwise, bolded text will display as configured
in the Setup - Terminal - Display - Color Setup... .

Ps = 4 Underscore on. Always uses the colors selected in the Setup - Terminal -
Display - Color Setup... .

Ps = 5 Blink on

Ps = 7 Reverse video on. Always uses the colors selected in the Setup - Terminal - Display
- Color Setup... .

Ps = 22 Bold off, normal intensity

Ps = 24 Underscore off

Ps = 25 Blink off

Ps = 27 Reverse video off, positive image

Character Colors (low intensity unless bolded)

Ps = 30 Black

Ps = 31 Red

Ps = 32 Green

Ps = 33 Yellow (displays as brown unless bolded)

Ps = 34 Blue

Ps = 35 Magenta

Ps = 36 Cyan

Ps = 37 White

Ps = 39 White

Table 4-13 Character and ANSI Color Attributes

Chapter 4 - WYSE, SCO-ANSI and ANSI Programming 164

The following examples use the emulator command DISPLAY to locally test the character attributes and colors.

Example 1: CMD>DISPLAY" CSI1;35mBOLD magenta characters CSI 0m" or
CMD>DISPLAY" CSI1;mBOLD magenta characters CSI0m"

Displays the character string in bold magenta characters at the current cursor position.

Example 2: CMD>DISPLAY" CSI5;7mReverse blink characters CSI25m"

Displays the character string using the blink attribute, 5, and the reverse video attribute, 7. After
the charactersdisplay, the blink is turned off, 25. Subsequent charactersdisplay in reverse video.

Example 3: CMD>DISPLAY" CSI1;33;43mYellow chars/brown cell CSI0m"

Displays the character string using the bold attribute and character color 33 to give yellow
characters. The character cell color, 43, shows as brown directly around each character.

Table 4-12 Character and ANSI Color Attributes (cont’d)

Escape Sequence Function
Set Character Attributes and ANSI Colors
CSIPs;Ps;...m

Character Cell Color (always low intensity colors)
Ps = 40 Sets the cell color to the current background color
Ps = 41 Red
Ps = 42 Green
Ps = 43 Yellow (displays as brown)
Ps = 44 Blue
Ps = 45 Magenta
Ps = 46 Cyan
Ps = 47 White
Ps = 49 Sets the cell color to the current background color

Direct Index Control Using a Prefix
< index Specifies the character color index
= index Specifies the character cell color index
> index Specifies the screen background index

ANSI Color Indexes
0 = black
1 = red
2 = green
3 = yellow
4 = blue
5 = magenta
6 = cyan
7 = white

165

u
DYNAMIC DATA EXCHANGE

OVERVIEW
Dynamic Data Exchange (DDE) is a method of exchanging information between two independent
Windows applications. These applications carry on a “conversation” by posting messages to each
other. The application that initiated the “conversation” is the “client”, and the responding program is
the “server”.

The emulator can be used as a client, a server, or both. When used as the client, the emulator provides
a complete set of DDE commands for interacting with any DDE server. In addition, as a server, the
emulator supports symbol linking and remote command execution. All DDE commands are part of
the Emulator Command Language (ECL). These commands can be run from a script file, the
command line, or the DDE Command Builder dialog box.

Several Windows applications currently support DDE. Consult your program’s documentation for
more information.

Chapter Five - Dynamic Data Exchange 166

5.1 USING DDE
Data exchanges that do not require ongoing interaction from the operator can be fully automated with DDE.
The emulator establishes a link to another application for the sole purpose of exchanging data — after which
the emulator and the other application can exchange data without operator involvement.

DDE can be used in commands for the following purposes:

o Start another application.

o Send data to another application.

o Get data from another application.

o Carry out commands in another application.

You can also implement a broad range of local and host application features including:

o Establishing a link to real-time host data, then transferring the information locally to your PC
immediately upon change.

o Performing data queries between applications, such as a spreadsheet querying the host for current
numbers from its database.

o Creating a compound document, i.e., a Word file with a graphics chart produced by a graphics program,
in which the information for the graphics program comes directly from the host. Using DDE, the chart
will be updated upon change of the host data, without changing the rest of the document.

When exiting a copy of the emulator any associated links and any client or server DDE conversations are closed.

5.1.1 DDE Concepts
DDE utilizes some unique terminology which is important to understand before using DDE.

Client vs. Server
The client initiates a conversation with a server, or sends commands to the server to execute. Both the
client and the server can terminate the conversation.

Conversations and Transactions

When two applications exchange DDE messages, they are engaged in a conversation. The messages
that are passed back and forth are transactions.

The emulator can be engaged in several conversations at the same time, acting as the client in some
and as the server in others. These conversations can be between the same application, or different
applications. In addition, these conversations may be with other instances of the emulator.

DDE transactions can be one-time data transfers, continuous “links” in which applications send updates to each
other as data changes, or commands that are executed by the receiving program. Not all DDE servers allow
execution of commands. Consult your DDE program’s documentation.

167

5.1.2 Service Names, Topic Names, and Item Names
Before initiating a conversation, both applications must agree upon the service, topic, and item names. The DDE
syntax of the client application determines how the emulator server recognizes these names.

Service Name
Each DDE conversation is identified by the service name (formerly known as application name) and
topic; the client and server agree upon this before the conversation is initiated. The default can be
overridden using either the Server Name option (in the DDE dialog box) or the command SET DDE-
SERVERNAME. This can be used when multiple copies of the emulator are running simultaneously,
and client applications need to distinguish between them in order to talk to the window running on
the desired host with the appropriate settings.

Topic Name
The DDE topic is the way data is classified so that multiple data items can be exchanged during a
conversation. The topic is typically a filename for those applications operating on file-based documents.
Other applications use an application-specific name. Topic and data items are used when a client
application begins a DDE conversation with the emulator as the DDE server. Supported topcs include
“System”, “ECL”, and “Settings”.

Item Name
All requests must reference an item name which matches a client request to the proper server response.
The data item values can be passed from the server to the client and vice versa.

5.1.3 Server Topics
DDE clients can address the emulator as a server during a conversation. Topics and data items are used when a
client application starts a DDE conversation with the emulator; the way these are compiled into actual DDE
commands is determined by the DDE syntax of the client’s application. The emulator supports the following
topics:

System Provides information to the client about what topics, items, and data formats the server
supports. In addition, the System topic can be used to retrieve the server’s current status.

ECL Allows the client to retrieve data from variables within the emulator and execute ECL
commands.

Settings Provides information about the current settings of the emulator.

5.2 SYSTEM TOPIC
Permits a DDE client to ask a server, such as the emulator, which topic names, item names, and data formats it
supports. It also provides general information about the application’s DDE support and accesses the emulator‘s
DDE server status.

System topic items are accessed with DDE data requests. Each request returns a specific type data.

To find out which servers are present and the kinds of information they can provide, a client can request a
conversation on the System topic with the service name set to NULL (“”).

Chapter Five - Dynamic Data Exchange 168

5.2.1 System Topic Items
Contained within the System topic are pre-defined items that provide specific information. The emulator
supports the following system topic items:

SysItems Returns a tab-separated list of items supported under the System topic by this server
(SysItems, Topics, Format, Status and StatusNum).

Topics Returns a tab-separated list of topics supported by the emulator DDE server. The topics
currently supported are: System, ECL, and Settings.

Format Returns a tab-separated list of clipboard formats supported by the emulator DDE server.
Currently, the only format supported is “TEXT”.

Status Returns a status string that describes the status of the prior DDE server operation. The
string’s format is as follows:

“Status n : status description”

Where: N is a numeric status code.

A DDE client can use data requests (or establish a permanent link) to monitor the Status item, and
receive continuous reports of the server’s status. A second conversation can be maintained by the client
for this purpose. This information is essential for a client application that runs complex ECL scripts
using the DDE execute message (see Executing ECL Commands).

5.3 ECL TOPIC
The ECL (Emulator Command Language) topic allows access to EM320’s command language when the
emulator is acting as a DDE server. This allows development of sophisticated systems of execution control and
dynamic data exchange between other applications and the emulator (and hence host computers and networks).

5.3.1 ECL Topic Items
The Emulator Command Language (ECL) allows the use of symbols (also known as variables) to hold data
values. All command language symbols (variables) are valid ECL topic data items. The following sections
discuss the various actions that can be performed using the ECL topic from a client application. These include:

o Requesting the value of an ECL variable - Global symbols only

o Changing the value of an ECL variable

o Creating an Advise Data Link to an ECL variable

o Executing ECL commands or command file

169

5.3.2 Requesting the Value of an ECL Variable
DDE request messages can be issued from a client application to obtain the value of any emulator command
language variable. Even though the item requested may be a numeric symbol, all data items sent to the client
are in text format. The client application must convert this text value to numeric if necessary.

The following example connects to another instance of the emulator and requests the value of the variable
COUNT.

Example: DDE CONNECT “ms320 ”
“ECL” CONV S = DDE REQUEST ‘CONV’ “COUNT”
RESULT DDE DISCONNECT ‘CONV’

The value of COUNT in the server instance of emulator is placed in the variable RESULT.

Note: This example assumes that the global variable COUNT exists in the server instance of the emulator. If the
global symbol is not found or not initialized, the value returned from the DDE REQUEST will be zero.

5.3.3 Changing the Value of an ECL Variable
DDE poke messages can be issued from a client application to change the value of any emulator variable. All
data items sent to the emulator must be in text format. For numeric variables, the value is translated by the
emulator automatically.

The following example connects to another instance of the emulator and sets the value of the variable COUNT.

Example: DDE CONNECT “ms320 ”
“ECL” CONV
DDE POKE ‘CONV’ “COUNT” “200" DDE DISCONNECT ‘CONV’

The value of COUNT in the server instance of the emulator would be set to 200.

Note: If the global variable COUNT does not already exist in the server instance of the emulator, it is created and
assigned the passed value.

5.3.4 Creating an Advise Data Link to an ECL Variable
DDE advise messages can be issued from a client application to create and Advise Data Link to an ECL variable.
Whenever the value of the ECL variable changes, the client application is automatically notified and the new
value is sent. As with the DDE request messages, all data items sent to the client are in text format.

Example: You can update the value of a variable that changes frequently because of the host connection,
into your Excel spreadsheet. Create an Advise Data Link from Excel to the emulator symbol. Enter
the following DDE link into the desired cell of the spreadsheet :

=ms320|ECL!HOSTDATA

This command uses the service name“MS320”, the topic “ECL”, and links the spreadsheet cell
to an ECL variable called HOSTDATA. Whenever the value of HOSTDATA changes, Excel is
automatically updated with the new value.

Chapter Five - Dynamic Data Exchange 170

5.3.5 Executing ECL Commands or Command Files
The DDE execute message allows the client to send commands to the emulator server for execution. The
following examples illustrate the execute process.

Example 1: “CLS”
“STR1 := Dialing...”

Example 2: “@LOGIN”

Execute the command file LOGIN.ECF.

5.3.6 Settings Topic
The Settings topic provides query access to a limited number of settings within the emulator. Valid data item
names in this topic include the emulator command language SET parameters. Requesting the value of a Settings
parameter returns a text string containing the current value of that setting. The Settings topic supports DDE
REQUEST only (DDE ADVISE or DDE POKE are not supported).

The data items currently supported include:

o SERVERNAME

o TERMINAL /WIDTH

o TERMINAL /LINES

Example: DDE CONNECT “ms320 "
”SETTINGS" CONV
DDE REQUEST ‘CONV’ “TERMINAL /LINES”
RESULT DDE DISCONNECT CONV

The variable RESULT would contain the current number of display lines for the server instance of the emulator.

5.4 DDE COMMANDS
DDE commands appear in uppercase letters (e.g., DDE CONNECT). The standard syntax is:

DDE CONNECT “service name” “topic name” variable

Refer to Chapter 7 (command Language) for more information.

Note: When entering DDE commands from theDDE>prompt, do not preceed the command with DDE.

5.4.1 DDE Server Operation
The emulator can also be used as a server that allows command execution, data retrieval, and data updates.

ECL commands used to change server operations can be entered at the emulator command line prompt or set
in the DDE Setup dialog box.

Refer to Chapter 7 (Command Language) for the SET DDE... commands.

171

5.4.2 DDE Error Facility
Whenever a DDE command is completed, the emulator sets a status condition code in the symbol $STATUS
to indicate the reason the command terminated. The following status codes are specific to DDE.

In addition to setting the status code, special DDE messages are displayed just before the $STATUS codes on
the command line. These messages often provide more information than the $STATUS code messages.

5.4.3 Client Messages
Client messages are all prefixed with “DDE [Client]:”, followed by the message. The messages that can appear
when using the DDE client commands are as follows:

Conversation already exists.

The conversation handle passes to the DDE CONNECT command is currently active. Either disconnect
the conversation variable or supply a new conversation variable name.

Data not available from server.

The data requested by the client is not available on the server. The variable name may be misspelled
or the symbol on the server may be local instead of global.

Disconnected DDE connection.

The DDE DISCONNECT or DDE DISCONNECTALL command removed the conversation(s).

Error creating DDE data handle.

A severe internal error message. Could be caused by low memory conditions.

Error creating DDE string handle.

A severe internal error message which could be caused by low memory conditions.

Error disconnecting from server!

An internal error indicating that DDE DISCONNECT or DDE DISCONNECTALL failed.

Invalid conversation number.

The conversation number no longer exists. This usually occurs because a DDE CONNECT was not
previously complete, or the conversation has terminated already.

L Indent Message

E DDEBADCONN DDE Bad conversation handle

E DDEBADDATA DDE Bad data handle

E DDEBADDISC DDE DISCONNECT failed

E DDEINVDATAL Invalid data link requested

E DDEMAXADVISE Maximum number of advise items reached

E DDEMAXCONN Maximum number of connections reached

E DDENOCONN DDE CONNECT failed

E DDENODATA DDE Data not available from server

Table 5-1 DDE Error Messages and Status Codes

Chapter Five - Dynamic Data Exchange 172

Invalid data link requested.

The DDE ADVISE command failed because the item could not be found.

No such data link exists.

The DDE UNADVISE command failed because there was not an active Advise Data Link for this
item.

Ok establishing DDE connection.

The DDE CONNECT command succeeded. This message is informational only.

The server forced a disconnect.

The server sent a DDE terminate message during a conversation. The conversation number associated
with this connection is no longer valid.

Unsuccessful connection.

The DDE CONNECT command failed. The service name or topic name may be incorrect.

5.4.4 Server Messages
Server messages are all prefixed with “DDE [Server]:”, followed by the message. The messages that can appear
when the emulator is a server are as follows:

Advised client of change.

The value of an ECL symbol that has an Advise Data Link has changed, and the client was notified.
This message is informational only.

Could not create data handle.

A severe internal error message. This may be a result of low memory.

The client has disconnected.

The client application sent a disconnect message to the server and therefore terminated the conversation.
This message is informational only.

DDE connection confirmed.

When a client application sends a connect message and the server responds that the connection can be
made, the client sends this additional message to confirm the conversation This message is informational
only.

Requested data sent to client.

The client application sent a DDE request message to the server. The message was processed and the
value of the item was sent to the client. This message is informational only.

Received POKE data from client.

The client application sent a DDE poke message to change the value of an ECL variable. The message
was processed and the item was updated with the new value. This message is informational only.

For more information aboutthe emulator error handling, refer to theError Facility topic in Chapter 8.

173

5.5 DDE COMMAND BUILDER
Click on Execute - DDE Command Builder . The DDE Command Builder makes it easier to perform DDE
commands because you don’t need to learn the format of each command. In addition, each field in the Command
Builder contains a list of previously entered DDE parameters. Currently, this list holds up to 10 parameters.

The DDE Command Builder is used in the following way:

1) To select the desired DDE command, click on the appropriate button under theClient Commands
heading. Notice that as different DDE commands are selected, some of theParametersmay become
enabled or disabled. This indicates the required parameters for the selected command.

2) Once the desired DDE commands are selected, enter or select the data for the Parameters

3) When all parameters are entered, click the Execute button. The emulator creates the DDE command
string, copies the string to the command line, then executes the command string. The results display
above the command line just as if the commands were entered on the command line.

5.5.1 Copying a DDE Command to the Command Line
To edit the DDE command string before executing, click on the Copy button.The emulator creates the DDE
command string with the entered parameters, then copies the string to the DDE command line. You can then edit the string
by positioning the typing cursor in the string. When you have finished editing the string, clickOK to execute the command
or Cancel to cancel the command. The Cancel button also closes the dialog box.

Figure 5-1 DDE Command Builder

Chapter Five - Dynamic Data Exchange 174

5.6 DDE DEMO
The DDE demo demonstrates some of the Dynamic Data Exchange (DDE) capabilities of the emulator. Look
at thecommands in thecommand (.ECF) file for examplesof how to writeyour own DDE scripts.

To run the 30 second DDE Demo:

1) Start theemulator, if not already running.

2) Run the Command FileDDEDEMO.ECF using theFile - Run Command File dialog box.

TheDDEdemodisplaysascreenthat indicatesthecurrent timeandUSpopulation. Thisinformation isprovided
by the DDE server.

175

u
ASCII CONTROL CODE TABLE

OVERVIEW
The ASCII Control Code Table can be used during Keyboard, Mouse and Toolbar mapping.

Appendix A - ASCII Control Code Table 176

ASCII
Character

Hex
Code

Decimal
Code Keystroke

NUL 00 0 Ctrl @

SOH 01 1 Ctrl A

STX 02 2 Ctrl B

ETX 03 3 Ctrl C

EOT 04 4 Ctrl D

ENQ 05 5 Ctrl E

ACK 06 6 Ctrl F

BEL 07 7 Ctrl G

BS 08 8 Ctrl H

HT 09 9 Ctrl I

LF 0A 10 Ctrl J

VT 0B 11 Ctrl K

FF 0C 12 Ctrl L

CR 0D 13 Ctrl M

SO 0E 14 Ctrl N

SI 0F 15 Ctrl O

DLE 10 16 Ctrl P

DC1 11 17 Ctrl Q

DC2 12 18 Ctrl R

DC3 13 19 Ctrl S

DC4 14 20 Ctrl T

NAK 15 21 Ctrl U

SYN 16 22 Ctrl V

ETB 17 23 Ctrl W

CAN 18 24 Ctrl X

EM 19 25 Ctrl Y

SUB 1A 26 Ctrl Z

ESC 1B 27 Ctrl [

FS 1C 28 Ctrl \

GS 1D 29 Ctrl]

RS 1E 30 Ctrl ^

US 1F 31 Ctrl _

177

u
INDEX

!
$SEVERITY 51
$STATUS 51, 75
$STATUSID 51
132 Column
mode 124
7-Bit
select C1 transmission 121
8-Bit
select C1 transmission 121

A
Abort
command files 5
emulator commands 5
in command files 29
set in command files 39
ANSI/VT52 Mode 123
Auto Wrap 124

B
BREAK Command 8
BYE Command 25

C
Character Sets
mode 124
supplemental set report 145
Characters
special 60
CLOSE Command 9
CLS Command 10
Command Files
aborting 5
commenting 5
default 4
documenting 50
executing at CMD prompt 4
executing from host 4
execution of, 3
nested 4

Index i

nesting 51
parameter passing 50
status symbols 51
CONNECT Command 25
CONTINUE Command 10
Control Function Reports 144
Cursor Key Mode 125
Cursor Position Sequence 118
Cursor State Reports 144

D
DCS Private Control Sequence 132
DCS Private Sequence 132
DDE 166
client 167
client messages 172
conversations 167
ECL topic 169
error facility 172
item name 168
server 167
server messages 173
server name 168
topic name 168
transactions 167
DDE ADVISE 10
DDE Command Builder 174
DDE DISCONNECT 11
DDE DISCONNECTALL 11
DDE EXECUTE 12
DDE POKE 12
DDE REQUEST 12
DDE TOPICS 13
DDE UNADVISE 13
DELAY Command 14
DELETE SYMBOL Command 14
Device Attributes 133
primary 133
secondary 134
Device Control String
with user defined keys 130
Device Status Reports 134
cursor position 134
keyboard dialect 134

operating status 135
printer status 135
UDK status 135
DISPLAY Command 15
Display Lexicals 66
DOS Command 16, 25
DROPDTR Command 17
Dynamic Data Exchange
(see DDE) 166

E
Editing Sequence 119
EMULATE Command 17
Emulator Commands
aborting 5
at CMD prompt 2
descriptions 8, 14 - 22, 24, 28 - 32, 34, 36 - 37, 40, 43 -
44, 46 - 48
executing from host 3
execution 2
foreign commands 62
list of, 6
syntax 2
END Command 26
END INTERACTIVE Command 18
EOF
Kermit file transfer 26
set character 40
ERASE SCREEN Command 18
Erasing 119
Error Facility 74
DOS ERRORLEVEL 75
Error Messages 77
EXIT Command 19, 26
Expression Evaluation 54
integer 55
string 54
string to integer 54
substitution 55

ii

F
FINISH Command 26
FLUSH Command 20
Foreign Commands
in command files 62

G
GET Command 26
GOSUB Command 20
GOTO Command 20

H
HELP Command 21

I
IF Command 21
INQUIRE Command 22
Insert/Replace Mode 125
INTERACTIVE Command 24

K
KERMit File Transfer
commands 27
Keyboard Action Mode 125
Keypad 125

L
Labels 53
Lexical Substitution 69
phases of, 71
using ampersands 70

using apostrophes 69
automatic 69
iterative in expressions 73
iterative using apostrophes 72
iterative using command synonyms 72
undefined symbols 73
Lexicals 63
D$BLOCK 66
D$BOX 67
display 66
F$EXTRACT 63
F$GETINFO 63
F$LENGTH 64
F$LOCATE 64
F$MESSAGE 65
Line Attribute Sequence 120
Line Feed/New Line Mode 126
LOG Command 8, 28
LOGOUT Command 27

O
ON Command
ABORT 29
DEVICE_ERROR 30
DISCONNECT 30
error_severity 31
OPEN Command 31
Operators 56
arithmetic 57
arithmetic comparisons 59
logical 58
precedence 56
radix 59
string 57
string comparisons 58
Origin Mode 126

P
Permanent Symbols 51
Presentation State Reports 137
cursor information 137
restore state 140

Index iii

tab stops 140
PRINT Command
EJECT 33
ON/OFF 33
SCREEN 33
Printing Sequence 120
Private Control Sequences
DCS 132

Q
QUIT Command 34

R
READ Command 34
Receive Codes
control characters 117
cursor position 118
editing 119
erasing 119
line attributes 120
printing 120
select C1 controls 121
tab stops 121
terminal modes 121
terminal reset 129
user defined keys 130
RECEIVE Command 27
REPLAY Command 36
Reports
scrolling region 120
Reset Mode 122
RETURN Command 37

S
SCAN Command 37
SCO ANSI Programming Sequences 158
ANSI color attributes 159
character attributes 158
character sets 158

color attributes 159
columns 160
cursor positioning 160
inserting 161
key assignments 162
keyboard control 162
report 163
SCO Xenix color attributes 159
Screen Mode 127
Scrolling
mode 127
SEND Command 37
Send/Receive Mode 128
SET Command
ABORT 39
CHARACTER DELAY 40
DEVICE_ERROR 40
DISCONNECT 40
EOF CHARACTER 40
HOST 41
LINE DELAY 42
MESSAGE 42
ON 42
TERMINAL 43
TURNAROUND character 45
VERIFY 45
SET DDEAPPENDINSTANCE 38
SET DDEAUTOINITIALIZE 38
SET DDECLIENTTIMEOUT 38
Set Mode 122
SHOW Command
SYMBOL 45
Special Characters 60
output conversion 61
Status Symbols
$STATUS, $STATUSID, $SEVERITY 51
STOP Command 46
Strings
syntax 60
Supplemental Character Set Report 145
Symbols 51
substitution using apostrophes 69
assigning values 52
examples 52
purpose of, 51
substitution 69
substitution using ampersands 70

iv

substitution, phases of, 71
types 51
Symlex 67
definition 67
examples 68

T
Tab Stops 121
Terminal Modes 121
ANSI/VT52 123
auto repeat 123
auto wrap 124
backarrow key 124
character set 124
column 124
cursor key 125
insert/replace 125
keyboard action 125
keypad 125
line feed/new line 126
numeric keypad 126
origin 126
print extent 126
print form feed 127
reset 122
screen 127
scrolling 127
select status display 127
send/receive 128
set 122
status line type 128
terminal reset 129
text cursor enable 129
Terminal Modes Reports 140
reset 143
set 143
Terminal Reset 129
hard 129
soft 129
Terminal State Reports 136
restore state 136
Text Cursor Enable Mode 129

U
User Defined Keys 130
clear space for, 130
examples 131
format 130
loading keys 131

V
VT320 Reports 133
control function settings 144
cursor settings 144
device attributes 133
device status 134
modes 140
presentation state 137
supplemental character set 145
terminal state 136

W
WAIT Command 46
WP (WordPerfect) Command 47
WRITE Command 47
WYSE Programming Sequences 147
attribute codes 150
control codes 151
default value codes 156
display attribute codes 149
display field codes 149
escape codes 153 - 155
function value field codes 156
row/column codes 148
screen feature codes 147

Index v

	
	CHAPTER 1
	COMMAND LANGUAGE 1
	1.1COMMAND SYNTAX 2
	1.2COMMAND EXECUTION 2
	1.2.1 Command Line Execution 2
	1.2.1.1Entering Multiple Commands 3

	1.2.2Executing from the Host 3

	1.3COMMAND FILES 3
	1.3.1Specifying a Command File 3
	1.3.2Default Command File 4
	1.3.3Command Line Execution 4
	1.3.4Executing from the Host 4
	1.3.5Nested Command Files 4
	1.3.6Comments 5

	1.4ABORTING COMMANDS 5
	1.5EMULATOR COMMAND LIST 6
	1.5.1Emulator Command Descriptions 8

	
	CHAPTER 2
	COMMAND FILE PROGRAMMING 49
	2.1DOCUMENTING COMMAND
FILES 50
	2.2PASSING PARAMETERS 50
	2.3SYMBOLS 51
	2.3.1Symbol Types 51
	2.3.1.1Permanent Global Symbols 51

	2.3.2Assigning Symbol Values 52
	2.3.2.1Implied String Assignments 52

	2.4LABELS 53
	2.5EXPRESSION EVALUATION 54
	2.5.1String to Integer Conversion 54
	2.5.2String Expressions 54
	2.5.3Integer Expressions 55
	2.5.4Expression Substitution 55

	2.6OPERATORS IN EXPRESSIONS 56
	2.6.1String Operations 57
	2.6.2Arithmetic Operations 57
	2.6.3Logical Operations 58
	2.6.4String Comparisons 58
	2.6.5Arithmetic Comparisons 59
	2.6.6Radix Operators 59

	2.7SPECIAL CHARACTERS 60
	2.7.1Input Conversion 60
	2.7.2Output Conversion 61

	2.8FOREIGN
COMMANDS 62
	2.9LEXICALS 63
	2.10DISPLAY LEXICALS 66
	2.11SYMLEXES 67
	2.11.1Defining a Symlex 67

	2.12SYMBOL AND LEXICAL SUBSTITUTION 69
	2.12.1Automatic Symbol Substitution 69
	2.12.2Substitution Using Apostrophes 69
	2.12.3Substitution Using
Ampersands 70
	2.12.4Three Phases of Symbol Substitution 71
	2.12.4.1Iterative Substitution Using Apostrophes 72
	2.12.4.2Iterative Substitution Using Command Synonyms 72
	2.12.4.3Iterative Substitution in Expressions 73
	2.12.4.4Substitution of Undefined
Symbols 73

	2.13ERROR FACILITY 74
	2.13.1$STATUS Conditional Codes
75
	2.13.2DOS ERROR LEVEL 77
	2.13.3Messages 77

	!
	$SEVERITY51
	$STATUS51, 75
	$STATUSID51
	132 Column
	 mode124
	7-Bit
	 select C1 transmission121
	8-Bit
	 select C1
transmission121

	A
	Abort
	 command files5
	 emulator commands5
	 in command files29
	 set in command files39
	ANSI/VT52 Mode123
	Auto Wrap124

	B
	BREAK Command8
	BYE Command25

	C
	Character Sets
	 mode124
	 supplemental set report145
	Characters
	
special60
	CLOSE Command9
	CLS Command10
	Command Files
	 aborting5
	 commenting5
	 default4
	 documenting50
	 executing at CMD prompt4
	 executing from host4
	 execution of,3
	 nested4
	 nesting51
	 parameter passing50
	 status symbols51
	CONNECT Command25
	CONTINUE Command10
	Control Function Reports144
	Cursor Key Mode125
	Cursor
Position Sequence118
	Cursor State Reports144

	D
	DCS Private Control Sequence132
	DCS Private Sequence132
	DDE166
	 client167
	 client messages172
	 conversations167
	 ECL
topic169
	 error facility172
	 item name168
	 server167
	 server messages173
	 server name168
	 topic name168
	
transactions167
	DDE ADVISE10
	DDE Command Builder174
	DDE DISCONNECT11
	DDE DISCONNECTALL11
	DDE EXECUTE12
	DDE POKE12
	DDE
REQUEST12
	DDE TOPICS13
	DDE UNADVISE13
	DELAY Command14
	DELETE SYMBOL Command14
	Device Attributes133
	 primary133
	
secondary134
	Device Control String
	 with user defined keys130
	Device Status Reports134
	 cursor position134
	 keyboard dialect134
	 operating status135
	 printer status135
	 UDK status135
	DISPLAY Command15
	Display Lexicals66
	DOS Command16, 25
	DROPDTR Command17
	Dynamic Data Exchange
	 (see DDE)166

	E
	Editing Sequence119
	EMULATE Command17
	Emulator Commands
	 aborting5
	 at CMD prompt2
	 descriptions8, 14 - 22, 24, 28 - 32, 34, 36 - 37, 40, 43 - 44, 46 - 48
	44, 46 - 48
	 executing from host3
	 execution2
	 foreign commands62
	 list of,6
	 syntax2
	END Command26
	END INTERACTIVE Command18
	EOF
	 Kermit file transfer26
	 set character40
	ERASE SCREEN Command18
	Erasing119
	Error Facility74
	 DOS ERRORLEVEL75
	Error Messages77
	EXIT Command19, 26
	Expression Evaluation54
	 integer55
	 string54
	 string to integer54
	 substitution55

	
	F
	FINISH Command26
	FLUSH Command20
	Foreign Commands
	 in command files62

	G
	GET
Command26
	GOSUB Command20
	GOTO Command20

	H
	HELP Command21

	I
	IF Command21
	INQUIRE Command22
	Insert/Replace Mode125
	INTERACTIVE Command24

	K
	KERMit File Transfer
	 commands27
	Keyboard Action Mode125
	Keypad125

	L
	Labels53
	Lexical
Substitution69
	 phases of,71
	 using ampersands70
	 using apostrophes69
	 automatic69
	 iterative in expressions73
	 iterative using apostrophes72
	 iterative using command synonyms72
	 undefined symbols73
	Lexicals63
	 D$BLOCK66
	 D$BOX67
	 display66
	 F$EXTRACT63
	 F$GETINFO63
	 F$LENGTH64
	 F$LOCATE64
	 F$MESSAGE65
	Line Attribute Sequence120
	Line Feed/New Line Mode126
	LOG Command8, 28
	LOGOUT Command27

	O
	ON Command
	 ABORT29
	 DEVICE_ERROR30
	 DISCONNECT30
	 error_severity31
	OPEN
Command31
	Operators56
	 arithmetic57
	 arithmetic comparisons59
	 logical58
	 precedence56
	 radix59
	 string57
	 string comparisons58
	Origin Mode126

	P
	Permanent Symbols51
	Presentation State Reports137
	 cursor information137
	 restore
state140
	 tab stops140
	PRINT Command
	 EJECT33
	 ON/OFF33
	
SCREEN33
	Printing Sequence120
	Private Control Sequences
	 DCS132

	Q
	QUIT Command34

	R
	READ Command34
	Receive Codes
	 control characters117
	 cursor position118
	 editing119
	 erasing119
	 line attributes120
	 printing120
	 select C1 controls121
	 tab stops121
	 terminal modes121
	 terminal reset129
	 user
defined keys130
	RECEIVE Command27
	REPLAY Command36
	Reports
	 scrolling region120
	Reset Mode122
	RETURN Command37

	S
	SCAN Command37
	SCO ANSI Programming Sequences158
	 ANSI color attributes159
	 character attributes158
	 character sets158
	 color attributes159
	 columns160
	 cursor positioning160
	 inserting161
	 key assignments162
	 keyboard
control162
	 report163
	 SCO Xenix color attributes159
	Screen Mode127
	Scrolling
	 mode127
	SEND Command37
	Send/Receive
Mode128
	SET Command
	 ABORT39
	 CHARACTER DELAY40
	 DEVICE_ERROR40
	 DISCONNECT40
	 EOF CHARACTER40
	 HOST41
	 LINE DELAY42
	 MESSAGE42
	 ON42
	 TERMINAL43
	 TURNAROUND character45
	 VERIFY45
	SET DDEAPPENDINSTANCE38
	SET DDEAUTOINITIALIZE38
	SET DDECLIENTTIMEOUT38
	Set
Mode122
	SHOW Command
	 SYMBOL45
	Special Characters60
	 output conversion61
	Status Symbols
	 $STATUS, $STATUSID, $SEVERITY51
	STOP
Command46
	Strings
	 syntax60
	Supplemental Character Set Report145
	Symbols51
	 substitution using apostrophes69
	 assigning values52
	 examples52
	 purpose of,51
	 substitution69
	 substitution using ampersands70
	 substitution, phases of,71
	 types51
	Symlex67
	 definition67
	 examples68

	T
	Tab Stops121
	Terminal Modes121
	 ANSI/VT52123
	 auto repeat123
	
auto wrap124
	 backarrow key124
	 character set124
	 column124
	 cursor key125
	 insert/replace125
	 keyboard action125
	 keypad125
	 line feed/new line126
	 numeric keypad126
	 origin126
	 print extent126
	 print form feed127
	 reset122
	
screen127
	 scrolling127
	 select status display127
	 send/receive128
	 set122
	 status line type128
	 terminal reset129
	 text cursor enable129
	Terminal Modes Reports140
	 reset143
	 set143
	Terminal Reset129
	 hard129
	 soft129
	Terminal State
Reports136
	 restore state136
	Text Cursor Enable Mode129

	U
	User Defined Keys130
	 clear space for,130
	 examples131
	
format130
	 loading keys131

	V
	VT320 Reports133
	 control function settings144
	 cursor settings144
	 device attributes133
	
device status134
	 modes140
	 presentation state137
	 supplemental character set145
	 terminal state136

	W
	WAIT Command46
	WP (WordPerfect) Command47
	WRITE Command47
	WYSE Programming Sequences147
	 attribute codes150
	 control
codes151
	 default value codes156
	 display attribute codes149
	 display field codes149
	 escape codes153 - 155
	 function value field codes156
	 row/column codes148
	 screen feature codes147

	chp3.pdf
	CHAPTER 1INTRODUCTION 11
	1.1DOCUMENTATION LAYOUT 12
	1.1.1Notation 13
	1.1.2Examples 13
	1.1.3Emulator Commands 13

	1.2EMULATOR AND VT320 FUNCTION KEYS 14
	1.3APPLICATION WINDOW 15
	1.4LINE RECALL AND EDITING 16
	1.4.1Command Line Editing 16

	CHAPTER 2GETTING STARTED 17
	2.1PACKAGE CONTENTS 18
	2.2MINIMUM REQUIREMENTS 18
	2.3REGISTRATION 18
	2.4INSTALLATION 18
	2.4.1Creating an Icon 19

	2.5Emulator Application Window 19
	2.6CONNECTING 20
	2.6.1Connections 20
	2.6.2Session Manager 21
	2.6.2.1Creating Sessions 23
	2.6.2.2Copying Sessions 24
	2.6.2.3Deleting Sessions 24
	2.6.2.4Switching Sessions 25
	2.6.2.5Exiting Sessions Remotely 25

	2.6.3Windows Sockets 26
	2.6.3.1Windows Sockets Setup 27
	2.6.3.2Edit Node List 28

	2.6.4Modem (TAPI) 29
	2.6.4.1Edit Phone List 30

	2.6.5Poly/LAT-32 31
	2.6.6Serial 32
	2.6.6.1Serial Setup 33

	2.7WINDOW SIZING AND LOCATION 34
	2.7.1Number of Emulation Lines 34
	2.7.2Maximize Workspace 35

	2.8SCREEN SCROLLBACK 35
	2.9VIDEO ATTRIBUTE TO COLOR MAPPING 35
	2.10CHARACTER SETS 36
	2.11PRINTER SUPPORT 36
	2.12COMPOSE CHARACTERS 37
	2.13COMMON PROBLEMS 39
	2.14TECHNICAL SUPPORT 40

	CHAPTER 3DROP DOWN MENUS 41
	3.1EDIT 42
	3.1.1Copy 42
	3.1.2Paste 42
	3.1.3Send 42
	3.1.4Select All 42
	3.1.5Select Screen 42

	3.2EXECUTE 43
	3.2.1Abort 43
	3.2.2Break (short) 43
	3.2.3Break (long) 43
	3.2.4Command Line 43
	3.2.5Clear Communications 43
	3.2.6DDE
Command Builder 43
	3.2.7Drop DTR 43
	3.2.8Reset 44
	3.2.9Send Answerback 44
	3.2.10WordPerfect 5.x Mode 44

	3.3FILE 44
	3.3.1Edit Command File Selection 45
	3.3.2Run Command File Selection 46
	3.3.3Capture Text to File 47
	3.3.4Record Log File Selection 48
	3.3.5Replay Log File Selection 49
	3.3.6Receive 49
	3.3.7Send 49
	3.3.8Print 50
	3.3.9Page Setup 51
	3.3.9.1Page Setup
Options 52

	3.3.10Exit 53

	3.4HELP 54
	3.4.1Index 54
	3.4.2Using Help 54
	3.4.3About 54
	3.4.3.1General 54
	3.4.3.2Version 55

	3.5SETUP 55
	3.5.1Customizable Toolbars 56
	3.5.2Keyboard Mapper 56
	3.5.3Mouse Mapper 56
	3.5.4File Transfer 56
	3.5.5General 56
	3.5.5.1DDE 56
	3.5.5.2Directories 57
	3.5.5.3Log File Replay 58

	3.5.6Terminal Setup 59
	3.5.6.1Display 59
	3.5.6.1.1Color Setup 61

	3.5.6.2Keyboard 62
	3.5.6.2.1Default Enhanced Keyboard Key Assignments 64
	3.5.6.2.2Default AT Keyboard Key Assignments 66

	3.5.6.3Terminal Tabs 68
	3.5.6.3.1Terminal Tab Options 69

	3.6VIEW 71
	3.6.1Menu 71
	3.6.2Status Line 71
	3.6.3Centered 71
	3.6.4Framed 71
	3.6.5Maximize Workspace 71
	3.6.6Scrollbar 71
	3.6.7File Transfer Messages 71
	3.6.8Message History 72
	3.6.9Toolbars 72
	3.6.9.1Default Toolbar Descriptions 73

	CHAPTER 4KEYBOARD, MOUSE & TOOLBAR 75
	4.1KEYBOARD MAPPING 76
	4.1.1Creating a New Key Map 77
	4.1.2Defining a Key 78
	4.1.3Changing a Key Definition 81
	4.1.4Deleting a Key Definition 81

	4.2MOUSE MAPPING 82
	4.2.1Creating a New Mouse Map 83
	4.2.2Defining a Mouse Button 84
	4.2.3Changing a Mouse Button Definition
88
	4.2.4Deleting a Mouse Button Definition 88

	4.3CUSTOMIZE
TOOLBARS 89
	4.3.1Creating a New Toolbar 89
	4.3.2Properties Tab
89
	4.3.3Buttons Tab 91
	4.3.4Button Editor Tab 92
	4.3.4.1Defining a Toolbar Button 94
	4.3.4.2Changing a Toolbar Button
Definition 97
	4.3.4.3Deleting a Toolbar Button Definition 97
	4.3.4.4Renaming a Toolbar Button Definition 97

	!
	$SEVERITY177
	$STATUS177, 201
	$STATUSID177
	132 Column
	 mode251
	132 Column Mode53
	7-Bit
	 ASCII codes223
	 C0 codes224
	 control sequence introducer (ESC)226
	 environment222
	 select C1 transmission248
	8-Bit
	 ASCII codes224
	 C1 codes224
	
control sequence introducer (CSI)226
	 environment222
	 select
C1 transmission248
	80 Column Mode53

	A
	Abort43
	 command files131
	 emulator commands131
	 in command files155
	 Kermit file
transfer126
	 set in command files165
	Accelerator Keys63
	ANSI/VT52 Mode250
	Answerback69
	 send44
	Application Window15
	ASCII File Transfer
	 setup111
	ASCII File Transfer Setup
	 additional information112
	 echo check111
	 end of file string111
	 end of line delay111
	 host cancel character112
	 host prompt string112
	 outgoing character delay111
	 pad null lines111
	
receive file 115
	 send file 114
	 strip line feed111
	 turnaround character111
	AT Keyboard66
	Attributes240
	Auto Command Mode Setup113
	Auto Print Mode52
	Auto Wrap60, 251
	Auxiliary
Keypad237

	B
	Backspace/Delete63
	Baud Rate33
	BBS ANSI Mode68
	Bells
	 (see keyboard setup)63
	Binary File Transfer119,
122
	Break
	 long43
	 short43
	BREAK Command134
	BYE
Command151

	C
	C0 Control Characters224
	C1 Control Characters224
	Capture Text to File47
	 append47
	 filename47
	 overwrite
protection47
	 save (capture)47
	Centered Window71
	Character Attributes240
	 8-bit ASCII codes224
	 select241
	Character Encoding222
	 7-bit ASCII codes223
	 control functions226
	Character Rendition240
	 select240
	Character Sets36, 70, 227
	 7-bit national69
	 8-bit international69
	 DEC multinational36
	 DEC special graphics36
	 default228
	 ISO latin36
	 mapping,
locking shifts234
	 mapping, single shifts234
	 mode251
	 national character set69
	 national replacement36, 232
	 PC36, 69
	 quick reference208
	 selection232
	 supplemental set report272
	Characters
	 compose sequence37
	 special186
	Clear Communications43
	CLOSE Command135
	CLS Command136
	CMD Prompt43
	Color Palette61
	Color Selection61
	Color Setup35, 61
	 attribute control61
	 color palette61
	 factory colors61
	 saved colors62
	 selecting colors61
	 working colors62
	Columns59
	Command File
	 edit45
	 execution from menu bar46
	Command Files
	
aborting131
	 commenting131
	 default130
	 documenting176
	 executing at CMD prompt130
	 executing from host130
	 execution of,129
	 nested130
	 nesting177
	 parameter passing176
	 status symbols177
	Command Line
	 CMD prompt13, 43
	 editing and recall16
	Communications
	 problems39
	Compose Characters37
	Connect
	 Modem (TAPI)29
	 node name26
	 polyLAT/3231
	 serial32
	 Windows Sockets27
	 WINSOCK setup27
	CONNECT Command151
	Connecting to Host
	 problems39
	CONTINUE Command136
	Control
Codes239
	Control Function Reports271
	Control Functions226
	 control sequences226
	 device control string227
	 escape sequences226
	Control Menu Icon
	 maximize workspace35
	Control Sequence Debug69
	Control Sequence Introducer226
	Controller
	 print mode53
	Copy42
	Cursor59
	 type59
	Cursor Key Mode252
	Cursor Position Sequence245
	Cursor State Reports271

	D
	Data Bits33
	DCS Private Control Sequence259
	DCS Private Sequence260
	DDE281
	 client282
	 client messages287
	
conversations282
	 ECL topic284
	 error facility287
	 item name283
	 server282
	 server messages288
	 server name283
	
topic name283
	 transactions282
	DDE ADVISE136
	DDE Command Builder289
	DDE DISCONNECT137
	DDE DISCONNECTALL137
	DDE EXECUTE138
	DDE POKE138
	DDE REQUEST138
	DDE Setup56
	 append unique identifier57
	 server enable57
	 server name57
	 timeout57
	DDE TOPICS139
	DDE UNADVISE139
	DEC Emulation68
	DEC Multinational Character Set228
	DEC Special Graphics231
	DELAY Command140
	DELETE SYMBOL Command140
	Device Attributes260
	 primary260
	 secondary261
	Device Control String
	 with user
defined keys257
	Device Control Strings227
	 device control
character227
	 string terminator227
	Device Status Reports261
	 cursor position261
	 keyboard dialect261
	 operating status261
	 printer status262
	 UDK status262
	Directories Setup
	
command files57
	 file transfer directory57
	 picture files57
	DISPLAY Command141
	Display Control Mode69
	Display Lexicals192
	Display Lines60
	Display Setup59
	 auto wrap60
	 color (see color
setup)61
	 color setup35
	 columns59
	 cursor59
	 cursor type59
	
display lines34, 60
	 jump scrolling60
	 scrollback lines60
	 smooth scroll60
	 tab settings60
	Documentation
	 layout12
	
notation13
	DOS Command142, 151
	Drop Down Menus41
	 edit42
	 execute43
	 file44
	 help54
	 setup55
	 view71
	Drop DTR43
	DROPDTR Command143
	Dynamic Data Exchange
	 (see DDE)56, 281

	E
	Edit Command File45
	 filename45
	 open45
	Edit Menu42
	 copy42
	 paste42
	 select all42
	 select screen42
	 send42
	Edit Node List28
	Edit Phone List29 - 30
	Editing Keypad236
	Editing Sequence246
	EMULATE Command143
	Emulation Lines
	 (see
Display setup)34
	Emulator Commands
	 aborting131
	 at CMD prompt128
	 descriptions134, 140 - 148, 150, 154 - 158, 160,
162 - 163, 166, 169 - 170, 172 - 174
	163, 166, 169 - 170, 172 - 174
	 executing from host129
	 execution128
	 foreign
commands188
	 list of,132
	 notation13
	 syntax128
	Emulator Functions
	 vs. VT320 functions14
	Emulator Tokens64
	END Command152
	END INTERACTIVE Command144
	Enhanced Keyboard64
	EOF
	 Kermit file transfer152
	 set character166
	ERASE SCREEN Command144
	Erasing246
	Error Facility200
	 DOS ERRORLEVEL201
	Error Messages203
	Errors
	 see Problems39
	Examples
	 notation13
	Execute Menu43
	 abort43
	 break, long43
	 break, short43
	 clear
communications43
	 command line43
	 DDE command builder43
	 drop DTR43
	 reset44
	 send answerback44
	 WordPerfect 5.x mode44
	EXIT
Command145, 152
	Exit Emulator53
	Expression Evaluation180
	 integer181
	 string180
	 string to integer180
	 substitution181

	F
	File
	 capture47
	 replay49
	File Menu44
	 capture
text to file47
	 edit command file45
	 exit53
	 page setup51
	 print50
	 receive49
	 record log file48
	 replay log
file49
	 run command file46
	 send49
	File Transfer105
	 ASCII105
	 auto command mode setup113
	 binary119, 122
	 Kermit105
	 receive49
	 send49
	 XMODEM105
	 YMODEM105
	 ZMODEM105
	File Transfer Messages71
	File Transfer Setup56
	FINISH Command152
	Flow Control34
	 RTS/CTS34
	 Xon/Xoff34
	FLUSH Command146
	Foreign Commands
	 in command files188
	Framed Window71
	Function Keys
	 top row codes238

	G
	General Settings56
	 DDE (see DDE setup)56
	 directories (see directories setup)57
	 log file replay (see log file replay setup)58
	GET Command152
	GOSUB Command146
	GOTO Command146

	H
	Hangup Modem29
	Hardware
Requirements18
	Help54, 103
	 about EM320103
	HELP Command147
	Help Menu54
	 about54
	 index54
	 using help54
	Host Writable Status Line69

	I
	IBM Keypad63
	IF Command147
	INQUIRE Command148
	Insert/Replace Mode252
	Installation18
	 creating an icon19
	 registration number18
	INTERACTIVE Command150
	International Character Sets
	 character set mode69
	International Setup
	 character set mode69
	ISO Latin-1 Character Set230

	J
	Jump Scrolling60

	K
	Kermit 126
	KERMIT Command123
	Kermit
File Transfer105, 108
	 command 123 - 124
	 commands123, 153
	 file formats119, 122
	 get file 125
	 send 117
	 send file 124
	 setup107
	Kermit File Transfer 108
	Kermit File Transfer
Setup
	 packet 108
	 pad 108
	Key Codes
	 7-bit70
	 8-bit70
	Key Mapping76
	 changing a key definition81
	 configuring78
	 creating a new keymap77
	 defining key78
	 deleting a key definition81
	Keyboard
	 type62
	Keyboard Action Mode252
	Keyboard Mapping56
	Keyboard Setup62
	 accelerator keys63
	 backspace key63
	 IBM
keypad63
	 key behavior63
	 margin bell63
	 return key63
	 type62
	
warning bell63
	Keyboards62
	 AT66
	 Enhanced64
	Keycodes70
	Keypad252
	 application mode70
	 IBM63
	 numeric mode63
	Keys
	
vs. tokens14

	L
	Labels179
	Lexical Substitution195
	 phases of,197
	 using ampersands196
	 using apostrophes195
	
automatic195
	 iterative in expressions199
	 iterative using
apostrophes198
	 iterative using command synonyms198
	 undefined
symbols199
	Lexicals189
	 D$BLOCK192
	 D$BOX193
	 display192
	
F$EXTRACT189
	 F$GETINFO189
	 F$LENGTH190
	 F$LOCATE190
	 F$MESSAGE191
	Line Attribute Sequence247
	Line Editing
	 command line16
	 keys for,16
	Line Feed/New Line Mode253
	Local Echo69
	Local Mode69
	LOG Command134, 154
	Log File100
	 append to existing48
	 record48, 100
	 replay101
	 replay options101
	 replay pauses102
	 replay programming102
	 replay rate102
	 replay setup58
	Log File Replay Setup58
	 clear screen58
	 every page58
	 replay rate58
	 text58
	Log Telnet Mode27
	LOGOUT Command153

	M
	Maximize Workspace35, 71
	Menu Bar71
	Menu Bar Accelerator Keys63
	Menus
	 notation13
	Message History72
	Modem
	 cable diagrams274
	 connect status34
	 control34
	Modem (TAPI)
	 edit phone list29 - 30
	 hangup29
	 phone number29
	 port29
	Modem
(TAPI) Setup29
	Mouse Mapping56, 82
	 changing a mouse button
definition88, 97
	 configuring84, 94
	 creating a new mouse map83,
89
	 defining a mouse button84
	 deleting a mouse button
definition88, 97

	N
	National Character Set69
	Negotiate Transmit Binary27
	Normal Print Mode52

	O
	ON Command
	
ABORT155
	 DEVICE_ERROR156
	 DISCONNECT156
	 error_severity157
	Online Help103
	 see Help54
	Online Mode69
	OPEN Command157
	Operators182
	 arithmetic183
	 arithmetic comparisons185
	 logical184
	 precedence182
	 radix185
	 string183
	 string comparisons184
	Origin Mode253
	Overwrite Protection
	 capture text to file47
	 log file48

	P
	Package Contents18
	Page Setup51
	 lines per page51
	 margins51
	 options (see page setup options)51 - 52
	 orientation51
	 paper51
	Page Setup Options52
	 132 column53
	 80 coloumn53
	 automatic close on print screen52
	 finalize53
	 force black on white52
	 idle time before close52
	
initialize53
	 print controller53
	 print mode52
	 print to file52
	Parity33
	Paste42
	PC Fonts69
	Permanent
Symbols177
	Phone List29 - 30
	polyLAT/32 Setup31
	 node name31
	Presentation State Reports264
	 cursor information264
	 restore state267
	 tab stops267
	Print50
	 auto36
	 controller mode36
	 copies50
	 device50
	 extent mode36
	 graphics50
	 print to file50
	 properties50
	 range50
	 screen36, 50
	
scrollback50
	 selected text50
	PRINT Command
	 EJECT159
	 ON/OFF159
	 SCREEN159
	Printer
	 support36
	Printing
	 screen50
	Printing Sequence247
	Private Control Sequences
	 DCS259
	Problems39
	 dropping characters40
	 garbage characters39

	Q
	QUIT Command160

	R
	READ Command160
	Receive Codes240
	 character set selection232
	 compatibility level241
	 control characters244
	 cursor position245
	 editing246
	
erasing246
	 line attributes247
	 printing247
	 quick reference, VT100215
	 quick reference, VT320211
	 quick reference, VT52217
	 select C1 controls248
	 tab stops248
	 terminal modes248
	 terminal reset256
	 user defined keys257
	 VT320 control sequences212
	RECEIVE Command153
	Record
Log File48
	 append48
	 filename48
	 overwrite protection48
	 save (record)48
	Registration Card18
	Registration Number18, 40
	Rendition240
	Replay
	 (see also Log File Replay)101
	REPLAY Command162
	Replay Log File49
	 filename49
	 open49
	Reports
	 quick reference218
	 scrolling region247
	Reset Mode249
	Reset Terminal44
	RETURN Command163
	Return Key63
	RTS/CTS34
	RTS/CTS Protocol34
	Run Command File
	 filename46
	 open46
	 run46

	S
	SCAN Command163
	SCO ANSI Mode68
	SCO ANSI Programming Sequences291
	 ANSI color attributes292
	 character attributes291
	
character sets292
	 color attributes292
	 columns293
	 cursor positioning294
	 inserting294
	 key assignments295
	 keyboard control295
	 report296
	 SCO Xenix color attributes293
	Screen
Mode254
	Screen Scrollback35
	Scrollback35
	Scrollback Lines60
	Scrollbar71
	Scrolling
	 mode254
	Select All42
	Select Screen42
	Send42
	SEND Command163
	Send File Commands
	 symbols114
	Send/Receive Mode255
	Serial Setup32 - 33
	 baud rate33
	 data bits33
	 flow control34
	 limited transmit34
	 modem control34
	 node name32
	 parity33
	 setup33
	 stop bits33
	SET Command
	 ABORT165
	 CHARACTER DELAY166
	 DEVICE_ERROR166
	 DISCONNECT166
	
EOF CHARACTER166
	 HOST167
	 LINE DELAY168
	 MESSAGE168
	 ON168
	 TERMINAL169
	 TURNAROUND character171
	 VERIFY171
	SET DDEAPPENDINSTANCE164
	SET DDEAUTOINITIALIZE164
	SET DDECLIENTTIMEOUT164
	Set Mode249
	Settings File
	 save55
	Setup
Menu55
	 file transfer setup56
	 general56 - 57
	 keyboard mapper56
	 mouse mapper56
	 terminal68
	SHOW Command
	
SYMBOL171
	Smooth Scroll60
	Special Characters186
	 output conversion187
	Status Symbols
	 $STATUS, $STATUSID, $SEVERITY177
	Stop Bits33
	STOP Command172
	Strings
	 syntax186
	Supplemental Character Set Report272
	Symbols177
	 substitution using apostrophes195
	 assigning values178
	 examples178
	 purpose of,177
	 substitution195
	 substitution using ampersands196
	 substitution, phases of,197
	 types177
	Symlex193
	 definition193
	 examples194

	T
	Tab Settings60
	 clear all button60
	 set every button60
	Tab Stops248
	TAPI29
	Technical Support40
	Terminal Modes248
	 ANSI/VT52250
	 auto repeat250
	 auto wrap251
	 backarrow key251
	
BBS ANSI68
	 character set251
	 column251
	 cursor key252
	 insert/replace252
	 keyboard action252
	 keypad252
	 line feed/new
line253
	 numeric keypad253
	 origin253
	 print extent253
	 print form feed254
	 reset249
	 SCO ANSI68
	 screen254
	 scrolling254
	 select status display254
	 send/receive255
	 set249
	 status line type255
	 terminal reset256
	 text cursor
enable256
	 VT10068
	 VT10268
	 VT22068
	 VT32068
	 VT5268
	Terminal Modes Reports267
	 reset270
	 set270
	Terminal Reset44, 256
	 hard256
	 soft256
	Terminal Setup68
	 answerback69
	 answerback message69
	 auto answerback69
	 character sets69 - 70
	 color setup
(see color setup)61
	 conceal message69
	 control sequence
debug69
	 cursor pad70
	 DEC keypad70
	 display (see display setup)59
	 host variable status line69
	 key codes70
	 keyboard (see keyboard setup)62
	 local echo69
	 new line69
	 options69
	 PC fonts69
	 status69
	 type68
	 user defined keys70
	 user
features70
	Terminal State Reports263
	 restore state263
	Text
	 copy42
	 paste42
	 select all42
	 select screen42
	 send42
	Text Cursor Enable Mode256
	Tokens
	 default key assingments64
	 emulator functions64
	 notation13
	 vs. keys14
	 vt tokens64
	Toolbars72
	Transmit Limited34
	Transmitted Key Codes236
	
auxiliary keypad237
	 control codes239
	 editing keypad236
	 quick reference209
	 standard keys236
	 top row function keys238

	U
	User Defined Keys257
	 clear space for,257
	 examples258
	 format257
	 loading keys258
	 lock/unlock70
	User Features70

	V
	Video Attributes61
	View Menu71
	 centered window71
	 file transfer messages71
	 framed window71
	 maximize workspace71
	 menu
bar71
	 message history72
	 scrollbar35, 60, 71
	 status line71
	 toolbars72
	 window size and location34
	VT Tokens64
	VT100 Escape Sequences
	 quick reference215
	VT100 Line Drawing
Character Set231
	VT100 Mode68
	 compatibility241
	VT100 Reports
	 quick reference221
	VT102 Mode68
	VT220 Mode68
	VT320
Control Sequences214
	 quick reference211 - 214
	VT320 Functions
	 vs. emulator functions14
	VT320 Mode68
	VT320 Reports260
	 control function settings271
	 cursor settings271
	 device attributes260
	 device status261
	 modes267
	 presentation state264
	 quick reference218
	 supplemental character set272
	 terminal state263
	VT52 Escape Sequences
	 quick reference217
	VT52 Mode68

	W
	WAIT Command172
	Warning Bell63
	Window
	 size and location34
	Windows Sockets
	 (see WINSOCK)27
	WINSOCK
	 (see Windows Sockets)27
	WINSOCK Setup
	 edit node list28
	 log telnet data27
	 negotiate transmit binary27
	WordPerfect 5.x Mode44
	WordPerfect Mode103
	 entering103
	
operation of,103
	 terminating103
	 transmit codes104
	WP (WordPerfect) Command173
	WRITE Command173

	X
	XMODEM File Transfer105
	 setup109
	XModem File Transfer 113
	Xon/Xoff34

	Y
	YMODEM File Transfer105
	 setup109

	Z
	ZMODEM File Transfer105
	 automatic download start110
	 setup110

	3:

